REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY CHEMICALLY TREATED DURIAN LEAVES

NORZIYANTI BINTI TALIB

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2014

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of study	6
1.4	Objective of study	7
1.5	Scope of study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Methylene Blue (MB)	9
2.2	Dye pollution	10
2.3	Dye removal techniques	12
2.4	Adsorption by using agricultural waste material	14
2.5	Modification method for plant waste	17

CHAPTER 3 METHODOLOGY

3.1	3.1 Materials		21
	3.1.1	Raw materials	21
	3.1.2	Chemicals and reagents	21
	3.1.3	Apparatus	21
3.2	Prepar	ration of adsorbent	22
	3.2.1	Sample collection	22
	3.2.2	Preparation of CTDL	23
3.3	Chara	cterization of untreated and treated durian leaves	23
	3.3.1	pH _{slurry}	23
	3.3.2	pH _{zpc}	23
	3.3.3	FTIR	24
	3.3.4	Ash content	25
	3.3.5	SEM	25
3.4	Batch	adsorption study	25
	3.4.1	Preparation of stock solution of MB solution	26

	3.4.2	Adsorption mechanism experiment	26
		3.4.2.1 Effect of adsorbent dosage	26
		3.4.2.2 Effect of initial pH	27
		3.4.2.3 Effect of initial concentration	27
		3.4.2.4 Isotherm studies	28
3.5	Expre	ession of results	28

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction		32
4.2	Chara	haracteristic of untreated and treated durian leaves	
	4.2.1	pH _{slurry}	32
	4.2.2	pH _{zpc}	33
	4.2.3	FTIR analysis	34
	4.2.4	Ash	37
	4.2.5	SEM	38
4.3	Batch	Batch adsorption studies	
	4.3.1	Effect of adsorbent dosage	40
	4.3.2	Effect of pH	41
	4.3.3	Effect of initial MB concentration and contact time	43
4.4	Kineti	Kinetic studies	
	4.4.1	Pseudo-first-order kinetic model	45
	4.4.2	Pseudo-second-order kinetic model	46
4.5	Isothe	Isotherm studies	
	4.5.1	Langmuir model	50
	4.5.2	Freundlich model	52
СНА	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	
5.1	Concl	usion	56
5.2	Recor	nmendations	57
CITI	ED REF	ERENCESS	59

CITED REFERENCESS APPENDICES

CURRICULUM VITAE	80

66

LIST OF TABLES

Table	Caption	Page
2.1	The treatment of dye removal techniques	13
4.1	FTIR spectra of durian leaves before and after treatment and MB loaded	36
4.2	Characteristic of ash determination	37
4.3	The pseudo-first-order and pseudo-second-order parameters at different MB concentration	49
4.4	Langmuir, Freundlich isotherm constants and correlation coefficients	53
4.5	Comparison of various adsorbents with the maximum adsorption capacity (q_{max}) of MB	55

ABSTRACT

REMOVAL OF METHYLENE BLUE FROM AQUEOUS SOLUTION BY CHEMICALLY TREATED DURIAN LEAVES

Chemically treated durian leaves (CTDL) is use to observe the new alternative adsorbent in removing MB from wastewater through adsorption process. The interactions between MB and the functional group in CTDL was confirmed by Fourier Transform Infrared (FTIR). A several parameters that influence in the adsorption process was studied such as the effect of adsorbent dosage of CTDLP and initial pH of MB in aqueous solution. This study was done at initial pH of MB which is at pH 6, the dosage is 0.04 g of CTDLP for 90 min at temperature 30 °C and the removal of MB is 95.93%. The adsorption data fit well in Langmuir isotherm model more than Freundlich isotherm model. Based on Langmuir isotherm model, the maximum monolayer adsorption capacity of MB is 125 mg g⁻¹ and R² \geq 0.989⁻ The best adsorption process in kinetic study showed in pseudo-second-order which is R² \geq 0.999.