ADSORPTION OF MALACHITE GREEN ONTO TREATED LALANG (Imperata cylindrica) POWDER

NOR SYAHIDA BINTI AHMAD BAKARIM

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNLOGI MARA

JULY 2014

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Research background	1
1.2	Problem statement	4
1.3	Research objectives	5
1.4	Significance of study	6
1.5	Scope of the study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Dyes	8
2.2	Malachite green	9
2.3	Malachite green (MG) adsorption	11
2.4	Plant adsorption	12
2.5	Lalang (Imperata cylindrica) leaf	13

CHAPTER 3 METHODOLOGY 3.1 Materials

3.1	Mater	Materials	
	3.1.1	Raw materials	15
	3.1.2	Chemicals and reagents	15
	3.1.3	Glassware	15
	3.1.4	Equipments and analytical instruments	16
3.2	Metho	Methods	
	3.2.1	Sample collection and chemical treatment	16
		3.2.1.1 Sample collection	16
		3.2.1.2 Chemical treatment of ICP	16
3.3	Prepa	ration of synthetic solution	17
3.4	Chara	cterization of chemically treated <i>Imperata cylindrica</i>	17
	2 / 1	Determination of $\mathbf{n}\mathbf{H}$ of aquaous slurry $(\mathbf{n}\mathbf{H},)$	17
	3.4.1	Determination of pII of zero point charge (pII)	17
	5.4.2	Determination of pri of zero point charge (pH _{zpc})	1/

	3.4.3	Analysis infrared spectrum of adsorbents (FTIR)	18
3.5	Batch	adsorption studies	18
	3.5.1	Effects of pH	18
	3.5.2	Effect of SICP dose on MG adsorption	19
	3.5.3	Kinetic studies	19
	3.5.4	Adsorption isotherm	19
3.6	Expre	ssion of result	20

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Characterization of adsorbent	23
	4.1.1 Physiochemical properties of adsorbent	23
	4.1.1.1 pH _{slurry} and pH _{zpc}	23
	4.1.1.3 FTIR analysis	24
4.2	Effect of pH system on MG uptake	25
4.3	Effect of adsorbent dosage on MG adsorption	26
4.4	Effect of contact time and initial MG concentration	28
4.5	Adsorption kinetic modeling	29
	4.5.1 Pseudo-first-order equation	30
	4.5.2 Pseudo-second-order equation	31
4.6	Adsorption isotherm	33
	4.6.1 Langmuir isotherm	34
	4.6.2 Freundlich isotherm	35

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
CITED REFERENCES	39
APPENDICES	
Appendix A	44
Appendix B	44
Appendix C	45
Appendix D	45
Appendix E	52
Appendix F	53
Appendix G	54
Appendix H	55
CURRICULUM VITAE	57

LIST OF TABLES

Table	Caption	Page
2.1	General properties of methylene blue (MG)	10
4.1	Percentage removal of MG (%) and adsorbed (mg g^{-1})	27
4.2	The pseudo-first-order parameters of MG at different	
	concentrations on SCIP	31
4.3	The pseudo-first-order parameters of MG at different	
	concentrations on SCIP	33
4.4	Langmuir, Freundlich isotherm parameters obtained by	
	using linear method for MG adsorption on SCIP	36

ABSTRACT

ADSORPTION OF MALACHITE GREEN ONTO CHEMICALLY TREATED LALANG (Imperata cylindrica) POWDER

Adsorbent prepared from lalang (Imperata cylindrica) leaf- a low cost adsorbent were used for removal of malachite green (MG) from aqueous solution. The adsorbent is sulphuric acid-treated Imperata cylindrica powder (SICP). The adsorbent materials were characterized by Fourier transform infrared (FTIR) spectroscopy. FTIR analysis showed that a large number of carbonyl and hydroxyl groups presence on the surface of SICP. Batch experiments were conducted to investigate the various parameters with respect to the pH_{zpc}, initial dye concentrations, solution pH, and adsorbent dosage. The pHzpc of SICP was determined to be 6.90 in which the adsorption of malachite green that considered as cationic dye was favorable. For kinetic adsorption studied, pseudo-first order and pseudo-second order were applied. Based on the result, it showed that kinetic studies were perfectly represented by pseudo-second-order kinetic model, suggesting that the adsorption might be physisorption process. The Langmuir and Freundlich isotherms models were employed in order to investigate the adsorption behavior of SICP and it followed the Langmuir isotherm model compared to the Freundlich isotherm model. So, it shows that adsorption process was monolayer with the coverage of the MG molecule only takes place at the outer surface of SICP. The maximum adsorption capacity (q_{max}) was found to be 92.51 mg g⁻¹ at pH 7, shaking speed of 120 rpm and at temperature at 303 K.