ADSORPTION OF METHYLENE BLUE ONTO XANTHOGENATED-MODIFIED CHITOSAN MICROBEADS

SITI NADZIFAH BINTI GHAZALI

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2013

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background and Problem Statement	1
1.2	Significance of the Study	4
1.3	Objectives of the Study	8

CHAPTER 2 LITERATURE REVIEW

2.1	Water Pollution	
2.2	2.2 Dye Pollution	
	2.2.1 Methylene blue	13
2.3	Chitosan	16
	2.3.1 Modified chitosan	18
2.4	Xanthogenate	21

CHAPTER 3 METHODOLOGY

3.1	Materials and Instruments		
3.2	Resea	rch Methodology	25
3.3	Preparation of XMCM		25
3.4	Chara	cterization of XMCM	26
	3.4.1	FTIR	26
	3.4.2	pH _{slurry}	26
	3.4.3	pH _{zpc}	27
3.5	Batch	Mode Study	27
	3.5.1	Effect of Adsorbent Dosage	27
	3.5.2	Effect of Initial pH	28
	3.5.3	Isotherm study	28

CHAPTER 4 RESULTS AND DISSCUSSION

4.1	Introduction	29
4.2	Adsorbent Characterizations	29
	4.2.1 pH _{slurry}	29
	4.2.2 pH _{zpc}	29
	4.2.3 FTIR	30
4.3	Batch Mode Study	34
	4.3.1 Effect of adsorbent dosage	34

	4.3.2	Effect of initial pH	35
4.4	Adsor	ption Isotherm	37
	4.4.1	Langmuir isotherm	39
	4.4.2	Freundlich isotherm	41
CHAI	PTER 5	CONCLUSION AND RECOMMENDATIONS	
5.1	Adsor	ption of Methylene Blue	44
5.2	Recon	nmendations	45
CITE	D REF	ERENCES	47

CITED REFERENCES	4/
CURRICULUM VITAE	51

LIST OF TABLES

Table	Caption	Page
4.1	The Langmuir equation	39
4.2	The Freundlich equation	41
4.3	Summary isotherm model data	43

ABSTRACT

ADSORPTION OF METHYLENE BLUE ONTO XANTHOGENATED-MODIFIED CHITOSAN MICROBEADS

Methylene Blue (MB) is thiazine dyes that widely use to color product in many industry such as textile, printing, leather, cosmetic and paper. Xanthogenated-Modified Chitosan Microbeads (XMCM) is use to observe the new alternative adsorbent in removing MB from water body through adsorption process. The interactions between MB and functional group in XMCM were confirmed by Fourier Transform Infrared (FT-IR) spectra. Several parameters that influence adsorption ability such as the effect of adsorbent dosage of XMCM and the effect of initial pH of MB aqueous solution were studied. This study were done at optimum condition which is at pH 4 of initial pH of MB solution, 0.01 g of initial XMCM dosage, 6 hours stirring time and temperature of $(30 \pm 2 \,^{\circ}\text{C})$. The adsorption data fit well Langmuir model more than Freundlich model. Based on Langmuir model, the maximum monolayer adsorption capacity of MB was 21.62 mg g⁻¹ which indicated that XMCM can be a new alternative adsorbent for removing MB.