SYNTHESIS OF RIGID POLYURETHANE FOAM FROM WASTE COOKING OIL-BASED POLYOL USING TRANSESTERIFICATION REACTION AND SUGARCANE BAGASSE ACTIVATED CARBON AS ADSORBENT

WAN NORFIRDAUS BIN WAN SALLEH

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1
3
4
5

CHAPTER 2 LITERATURE REVIEW

2.1	Polyurethane	6
2.2	Synthesis of polyurethane	7
2.3	Palm oil-based polyurethane	9
2.4	WCO-based polyurethane	10
2.5	Sugarcane baggase	12
2.6	Preparation of polyol	13

CHAPTER 3 METHODOLOGY

3.1	Chemical	18
3.2	Research methodology	20
3.3	Waste cooking oil sample collection	21
3.4	Preparation of sugarcane bagasse adsorbent	21
3.5	Adsorption of waste cooking oil	22
3.6	Synthesis of waste cooking oil-based polyol	
	by transesterification	22
3.7	Synthesis of polyurethane	22
3.8	Characterization of WCO, WCO-based polyol	
	and polyurethane	23
	3.8.1 Fourier transform infrared spectroscopy	23
	3.8.2 Iodine value	23
	3.8.3 Hydroxyl value	25
	3.8.4 Percent free fatty acid	27
	3.8.5 Acid value	28

Page

3.8.6	Viscosity test	28
3.8.7	Compressive strength test	28
3.8.8	Density determination	29

CHAPTER 4 RESULT AND DISCUSSION

4.1	Waste	e cooking oil	30
	4.1.1	Fourier transform infrared spectroscopy analysis	30
	4.1.2	Free fatty acid of waste cooking oil	34
	4.1.3	Iodine value	34
	4.1.4	Acid value	35
	4.1.5	Viscosity and colour	35
4.2	Adsor	bed waste cooking oil	35
	4.2.1	Fourier transform infrared spectroscopy analysis	36
	4.2.2	Free fatty acid percentage	38
	4.2.3	Acid value	39
	4.2.4	Viscosity and Colour	39
4.3	Waste	e cooking oil-based polyol	40
	4.3.1	Free fatty acid percentage	41
	4.3.2	Acid value	41
	4.3.3	Fourier transform spectroscopy analysis	41
	4.3.4	Hydroxyl value	44
	4.3.5	Physical properties	45
4.4	Waste	e cooking oil-based polyurethane	45
	4.4.1	Effect of catalyst	46
	4.4.2	Effect of glycerol	48
	4.4.3	Fourier transform infrared spectroscopy analysis	50
	4.4.4	Compressive strength	54
	4.4.5	Density	54

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Research summary	56
5.2	Recommendation	57

58
62
74

LIST OF TABLES

Table	Caption	Page
2.1	Properties of WCO	11
3.1	Sample size for iodine value test	24
3.2	Sample size for hydroxyl value test	25
3.3	Sample size for percent free fatty acid test	27
4.1	FTIR spectrum analysis for WCO	33
4.2	FTIR spectrum analysis for adsorbed WCO	38
4.3	Comparison between raw WCO with adsorbed WCO	40
4.4	FTIR spectrum analysis for WCO-based polyol	42
4.5	Comparison between adsorbed WCO with WCO-based polyol	45
4.6	Chemical composition for preparation of PU foam	47
4.7	Effect of catalyst on reaction time	47
4.8	Chemical composition for preparation of PU foam	49
4.9	Effect of glycerol on reaction time	49
4.10	FTIR spectrum analysis for WCO-based polyurethane	52

ABSTRACT

SYNTHESIS OF RIGID POLYURETHANE FOAM FROM WASTE COOKING OIL-BASED POLYOL USING TRANSESTERIFICATION REACTION AND SUGARCANE BAGASSE ACTIVATED CARBON AS ADSORBENT

This study was carried out to determine the use of waste cooking oil (WCO) in preparation of rigid polyurethane (PU) foam. The WCO was adsorbed by using sugarcane bagasse activated carbon in order to purify the oil. It was observed that percent free fatty acid decreased from 4.3 % to 0.77 % and viscosity from 106 mPa.s to 72.5 mPa.s which indicate the increase of the oil quality after adsorption. FTIR spectra also showed that there is no changes in functional group after adsorption action. The transesterification reaction was used to produce polyol from the adsorbed WCO. The reaction was proven successful due to the presence of O-H, C-H, C=O, and C-N functional group in FTIR spectra. Then O-H value, viscosity, colour, odour and pH for WCO-based polyol was also determined. It is showed that O-H value for WCO-based polyol were 148.79 mgKOH/g. The viscosity and pH for WCO-based polyol were 162.5 mPa.s and 10.47 respectively. Then the PU foam was prepared by using waste cooking oil-based polyol at ratio of 60:54:90:40 of glycerol:water:WCO oil-based polyol:amine. FTIR spectra show the presence of important peak such as N-H, C-H, C=O, C-N-H and C-O-C in the WCO-based PU. The PU obtained has low compressive strength which is 0.10 MPa but high in density which is 277.7 kg/m³. From all the analyses, it is concluded that the sugarcane bagasse can be used to purify the waste cooking oil and waste cooking oil-based polyol can be prepared by using transesterification reaction.