ADSORPTION OF METHYLENE BLUE ONTO CHEMICALLY MODIFIED COCONUT PALM FROND (cocos nucifera) POWDER

MOHAMAD SHAHRIZAD BIN ZAINAL ABIDIN

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNLOGI MARA

JANUARY 2014

TABLE OF CONTENTS

		Page
ACŀ	iii	
TAE	iv	
LIST	LIST OF TABLES	
LIST	T OF FIGURES	vii
LIS	T OF ABBREVIATIONS	viii
	STRACT	xi
ABS	STRAK	xii
CHA	APTER 1 INTRODUCTION	1
1.1	Dye in the environment	1
1.2	Problem statement	4
1.3	Significance of study	5
1.4	Objectives of study	5
1.5	Scope of works	6
CHA	APTER 2 LITERATURE REVIEW	7
2.1	Dye Removal Techniques	7
2.2	· · ·	10
2.3	Adsorption by using activated carbon	10
	(biomass and waste material based)	
2.4	Adsorption by using agricultural waste material	11
2.5	Factors Affecting Biosorption	15
2.6	Modification method for plant wastes	17
CH	APTER 3 METHODOLOGY	21
3.1	Materials	21
<i></i>	3.1.1 Raw materials	21
	3.1.2 Chemicals and reagents	21
	3.1.3 Equipments and analytical instruments	21

3.1.3 Equipments and analytical instrument3.2 Preparation of absorbent

22

	3.2.1	Collection of raw material and chemical treatment		22
		3.2.1.1 Sample collection		22
		3.2.1.2 Chemical treatment of CF		22
		3.2.1.3 Preparation of stock solutions of MB		23
3.3	Charac	cterization of chemically treated coconut frond powder	23	
	3.3.1	Determination of pH of aqueous slurry (pH _{slurry})		23
	3.3.2	Determination of pH of zero point charge (pH _{zpc})		23
	3.3.3	FTIR spectroscopy		24
	3.3.4	SEM-EDX		24
3.4	Batch	adsorption studies		24
	3.4.1	Effects of pH on adsorption of MB solution		25
		Effect of adsorbent dosage		25
	3.4.3	Effect of concentration and contact time		26
		Isotherm study		26
3.5	Expres	ssion of result		27
CHAI	PTER 4	RESULT AND DISCUSSION		30
4.1	Charao	cterization of adsorbent		30
	4.1.1	Physiochemical properties of adsorbent		30
	4.1.1.1	pHzpc and pHslurry		30
	4.1.1.2	2 FTIR spectroscopy		31
	4.1.1.3	SEM and EDX		34
4.2	Effect	1		36
4.3		of adsorbent dosage		38
4.4		of MB concentration and contact time		40
4.5		ption kinetic modeling		41
		Pseudo-first-order kinetic model		42
		Pseudo-second-order kinetic model		43
4.6		ption isotherm		46
		Langmuir isotherm		47
	4.6.2	Freundlich isotherm		48
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS				51
				53
-	CITED REFERENCES			
APPENDIXES				61
CURRICULUM VITAE			73	

LIST OF TABLES

Table	Caption	Page
2.1	Some conventional treatment of dyes removal techniques	9
2.2	Summary of the various adsorbents with the maximum adsorption capacity (q _{max}) MB	14
4.1	Percentage removal of MB (%) and adsorbed (mg g^{-1})	39
4.2	The pseudo-first-order and pseudo-second-order parameters at	46
	different MB concentrations	
4.3	Langmuir, Freundlich isotherm constant and	50
	correlation coefficients	

ABSTRACT

ADSORPTION OF METHYLENE BLUE ONTO CHEMICALLY TREATED COCONUT FROND (*Cocos nucifera*) POWDER

In this study coconut frond treated with sulfuric acid has been used as the low-cost adsorbent in adsorption of methylene blue (MB) from aqueous solution. Adsorption technique gives more advantage compared to other techniques for the removal of methylene blue (MB) from wastewater. The used of low cost adsorbent is more preferable compare to common adsorbent which is activated carbon which is expensive. Parameter of the analyses such as solution pH (2-10), SACF dose (0.01 - 0.05 g), contact time, initial concentration (20, 30, 40 mg L^{-1}). The equilibrium data were analysed using the Langmuir and the Freundlich isotherm. The kinetic process regarding to the adsorption of methylene blue (MB) onto SACF were described by applying the pseudo-first-order and pseudo-second-order kinetic model. FTIR analysis showed that a large number of carbonyl and hydroxyl group presence on the surface of SACF. The pH_{zoc} of SACF was determined to be 7.19 in which the adsorption of methylene blue (MB⁺) that considered as cationic dye was favourable. The Langmuir and Freundlich isotherms models were employed in order to investigate the adsorption behavior of SACF and the best fit to the data was obtained with the Langmuir isotherm model with maximum adsorption capacity (q_{max}) was found to be 62.5 mg g⁻¹ at pH 6, shaking speed of 120 strokes per minutes and at temperature at 303 K. So, it shows that adsorption process was monolayer with the coverage of the MB molecule only takes place at the outer surface of SACF.