PROPERTIES OF ORIENTED STRAND BOARD MADE FROM BANANA PSEUDO STEM (*Musa acuminate colla* (AA Group) *cv. 'Lacatan'*)

ABDUL HADI BIN MASOD

BACHELOR OF SCIENCE (Hons.) FURNITURE TECHNOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2013

TABLE OF CONTENTS

ACKNOWLEDGMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	X
ABSTRAK	xi
CHAPTER 1	
INTRODUCTION	

1.1	Background of the Study	1
1.2	Problem Statement	3
1.3	Objectives	4

CHAPTER 2

LITERATURE REVIEW

2.1	History of OSB		5
	2.1.1	Advantages of OSB	5
	2.1.2	Strength and Durability	6
	2.1.3	Flexibility	6
	2.1.4	Dimensional Diversity	6

	2.1.5	Applications	7
	2.1.6	Environmental Consideration	7
	2.1.7	Mechanical and Physical Properties of OSB	7
	2.1.8	Uses of OSB	9
2.2	Banan	a pseudo stem (Musa acuminate colla (AA Group) cv	
	'Laca	tan'	9
2.3	Urea Formaldehyde		14
2.4	Bending Strength		17
2.5	Thick	ness Swelling	17

CHAPTER 3

MATERIAL AND METHOD

3.1	Methodology		
	3.2	OSB Manufacturing Process	20
	3.2.1	Raw material	21
	3.2.2	Pressing	22
	3.2.3	Dry (Oven 80°C)	23
	3.2.4	Weighting	23
	3.2.5	Blending	24
	3.2.6	Mat Forming	25
	3.2.7	Cold Pressing	26
	3.2.8	Hot Pressing	27
	3.2.9	Trimming	28
	3.2.10) Cut to Size	29
	3.2.1	Testing	30
	3.2.1	1.1 Sample Cutting and Condition	31
	3.2.1	1.2 Method of Testing	31

3.2.11.3 Determination of Bending Strength	31
3.2.11.4 Determination of Internal Bonding Strength	33
3.2.11.5 Determination of Thickness Swelling	35

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1	Properties of OSB made from Banana Pseudo stem	36
4.2	Effect of Resin Content on Mechanical Properties	38
	4.2.1 Modulus of Rupture (MOR)	38
	4.2.2 Modulus of Elasticity (MOE)	39
	4.2.3 Internal Bonding (IB)	40
4.3	Effect of Resin Content on Physical Properties	42
	4.3.1 Thickness Swelling (TS)	42
4.4	Statistical Analysis	43
CHA	APTER 5	
CON	NCLUSION AND RECOMMENDATIONS	44
CITED REFERENCES		
APP	PENDICES	48
CUR	RRICULUM VITAE	62

ABSTRACT

PROPERTIES OF ORIENTED STRAND BOARD MADE FROM BANANA PSEUDO STEM (*Musa acuminate colla* (AA Group) *cv. 'lacatan'*)

In this study, three resin contents of urea formaldehyde (UF) of 8%, 10% and 12% were mixed with the strand size of approximately 50.8 mm banana pseudo stem (*Musa acuminata Colla* (AA Group) cv. '*Lacatan*'). A single layer of oriented strand board (OSB) was produced after the resin was cured at 165^oc. Unscreened technique was used to produce the board and the target density of the board was 500kg/m³. The properties of the board were determined by physical and mechanical properties through bending strength (MOR and MOE), internal bonding and thickness swelling tests. All board made from banana pseudo stem with 12% of resin content produced MOR (3.66 MPa), MOE (382.11 MPa), IB (0.14 Mpa) and TS (69.50 %). While the 10% resin content produced MOR (2.13 MPa), MOE (229.77 MPa), IB (0.10 MPa) and TS (88.10%) the 8% content produced MOR (1.72 MPa), MOE (170.80 MPa), IB (0.04 MPa) and TS (118.03 %). The results showed that each additional adhesive the mechanical and physical properties of OSB made from banana pseudo stem will be increased.

.