UNIVERSITI TEKNOLOGI MARA

MECHANICAL PROPERTIES OF COMPOSITE PANEL FROM COCONUT HUSK, KENAF FIBER AND FIBERGLASS – AN ALTERNATIVE FOR FURNITURE MATERIAL

NOR IZZATI BINTI MOHD ALI

Thesis submitted in fulfillment of the requirements for the **Bachelor of Furniture Technology**

Faculty of Applied Sciences

May 2011

TABLE OF CONTENTS

Page

APPROVAL SHEET	i
TABLE OF CONTENTS	ii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF PLATES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix

CHAPTER I

1.0	INTRODUCTION			
	1.1	Background	1	
	1.2	Problem Statement and Justification	3	
	1.3	Objectives	3	

CHAPTER II

2.0	LITE	ERATURE REVIEW	
	2.1	Composite Material	5
	2.2	Fiberglass	5
		2.2.1 Raw Material	6
		2.2.2 The Manufacturing Process	7
	2.3	Coconut Husk	10
		2.3.1 Uses	10
	2.4	Kenaf Fiber	11
		2.4.1 Uses and Products	13
		2.4.2 New Products	13
	2.5	Arcylic Resin	13
	2.6	Testing Method	15
		2.6.1 Bending Strength Test	15
		2.6.2 Tensile Strength Test	16

CHAPTER III

ME	THODOLOGY	
3.1	Materials Used	18
3.2	Material Preparations	21
	3.2.1 Coconut Husk	21
	3.2.2 Kenaf Fibers	22
	3.2.3 Raw Fiberglass	22
	3.2.4 Mold Release Wax	23
	3.2.5 Arcylic Resin (Crystic GC-DP710PA)	23
	3.2.6 Organic Peroxide	24
3.3	Method for the Manufacturing of the Composite Panel	25
	3.3.1 Mixing	26
	3.3.2 Preparing Mould	27
	3.3.3 Fiberglass Layering	27
	3.3.4 Coconut Husk and Kenaf Layering	28
	3.3.5 Clamping and Conditioning	28
	3.3.6 Cutting	29
	3.3.6.1 Sample Cutting for Bending Strength Test	29
	3.3.6.2 Sample Cutting for Tensile Strength Test	30
3.4	Testing Method	30
	3.4.1 Bending Strength Test	31
	3.4.2 Tensile Strength Test	31

CHAPTER IV

•

4.0	RESULTS AND DISCUSSIONS			
	4.1	Mechanical Properties of Composite Panel	32	
	4.2	Statistical Significances	33	
	4.3	Effect of Fiber Source	34	
		4.3.1 FMOE	35	
		4.3.2 FMOR	36	
		4.3.3 TMOE	37	
		4.3.4 TMOR	38	
	4.4	Percentage of Cellulose and Lignin	39	

CHAPTER V

5.0	CONCLUSION AND RECOMMENDATIONS	40
	REFERENCES	41
	APPENDICES	43
	VITAE	55

LIST OF TABLES

Table		Page	
4.1	Results for Mechanical Properties of Composite Panel	33	
4.2	Summaries of Statistical Significance	33	
4.3	Percentage of Lignin and Cellulose	39	

MECHANICAL PROPERTIES OF COMPOSITE PANEL FROM COCONUT HUSK, KENAF FIBER AND FIBERGLASS – AN ALTERNATIVE FOR FURNITURE MATERIAL

ABSTRACT

Raw material sources from agriculture sector such as kenaf fibers and coconut husks are mixed with fiberglass in the hope to produce composite panels for furniture material. The produced composite panels were studied for their mechanical properties such as bending and tensile strength conforming to the ASTM standards. The results showed that the bending strength values for the composite panel composing of kenaf fiber and fiberglass were 5916.11 MPa for MOE and 133.02 MPa for MOR. Meanwhile the tensile strength values were 11001.80 MPa and 97.32 MPa for MOE and MOR respectively. Composite panel consisting of kenaf fibers, coconut husks and fiberglass gave bending strength values of 4463.29 MPa for MOE and 86.04 MPa for MOR. The tensile strength values were 6071.53 MPa for MOE and 32.99 MPa for MOR. Finally, composite panel comprising of coconut husks and fiberglass gave bending strength values of 4247.17 MPa for MOE and 83.65 MPa for MOR and tensile strength values of 5993.12 MPa for MOE and 30.68 MPa for MOR. Such findings lead to the conclusion that agriculture source especially the kenaf fibers can serve as potential alternative composite material for the furniture industry.