EVALUATION ON THE PHYSICAL AND MECHANICAL PROPERTIES OF PARTICLEBOARD FROM BATAI (PARASERIANTHES FALCATARIA)

By

NOOR REHAN BINTI ISMAIL

.

Final Project Submitted in Partial Fulfillment for the Bachelor of Science (Hons.) Furniture Technology.

MAY 2011

TABLE OF CONTENTS

Page

APPROVAL SHEET	i
TABLE OF CONTENTS	ii
DEDICATION	iv
ACKNOWLEDGEMENT	v
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATE	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER I

1.0	INTE 1.1 1.2 1.3	RODUCTION Definition of Particleboard Problem Statement and Justification Objective	1 2 4
СНА	PTER	п	
2.0	LITE	RATURE REVIEW	
	2.1	Materials for Particleboard	4
		2.1.1 Batai	5
		2.1.1.1 Botanical Classification	6
2.1.1.2 Properties 8		8	
2.1.1.3 Utilization 8			8
	2.2 Particleboard		10
		2.2.1 Factor That Effect the Particleboard Properties	10
		2.2.1.1 Effect of Particles sizes	11

2.2.1.2 Resin Content	11
2.2.1.3 Urea Formaldehyde	12
2.2.1.4 Wax	12

Particleboard Utilization	13
	Particleboard Utilization

CHAPTER III

3.0 MATERIALS AND METHODS

3.1	Raw Material Preparation	15
	3.1.1 Batai	15
	3.1.2 Adhesive	16
3.2	Panel Manufacturing	16
3.3	Panel Testing	17
	3.3.1 Bending Strength (MOR & MOE)	18
	3.3.2 Determining of Internal Bond Strength (IB)	19
	3.3.3 Thickness Swelling and Water Absorption	20

CHAPTER IV

4.0	RESU	RESULTS AND DISCUSSIONS		
	4.1	Physical Properties – Density	21	
	4.2	Bending Strength	22	
	4.3	Internal Bonding Strength	24	
	4.4	Thickness Swelling and Water Absorption	25	

CHAPTER V

5.0	CONCLUSION AND RECOMMENDATIONS	29
	REFERENCES	30
	APPENDIX	32
	VITAE	72

LIST OF ABBREVIATIONS

CO^2	Carbon Dioxide
PB	Particleboard
КРРК	Ministry of Plantation Industries and
	Commodities
JIS	Japanese International Standard
spp.	Species
UF	Urea Formaldehyde
MDF	Medium Density Fiberboard
RH	Relative Humidity
MOR	Modulus of Rupture
MOE	Modulus of Elasticity
IB	Internal Bonding
TS	Thickness Swelling
WA	Water Absorption

ABSTRACT

EVALUATION ON THE PHYSICAL AND MECHANICAL PROPERTIES OF PARTICLEBOARD FROM BATAI (PARASERIANTHES FALCATARIA)

MAY 2011

The objective of this study was to investigate the suitability of Batai tree (Paraserianthes Falcataria) in manufacturing particleboard. In this study, UF (Urea Formaldehyde) was used as a binder with three different resin contain; 8%, 10% and 12% with addition 1% of wax and without addition of wax. Two different particles size; 1.0 mm and 2.0 mm were used. The target density was 550kg/m². The properties include Bending Strength (MOR and MOE), Internal Bond Strength and water absorption were determined based on Japanese International Standard (JIS A 5908:2003). From the study, it showed that, MOR and MOE value for panel with size 2.0mm is greater compare with 1.0mm. Conversely, panel manufactured using 1.0mm was better in internal bond strength compare with panel 2.0mm. The result also shows that, MOR, MOE and internal bond strength for panel without wax is higher compare with panel with wax. The percentage of resin contain also affected the bending strength of the panel. When the percentage of resin increased, the MOR and MOE value was increased. The water absorption rate for panel with addition of wax using 1.0mm particle was slightly lower compare with panel manufactured without wax. Particles sizes, percentage of resin contain and addition of wax were affected the mechanical properties of particleboard from Batai.