

EM110 DIPLOMA OF MECHANICAL ENGINEERING FACULTY OF MECHANICAL ENGINEERING UITM CAWANGAN JOHOR, PASIR GUDANG CAMPUS

MEC332 MECHANICAL ENGINEERING DESIGN

PROJECT:

AUTOMATED PORTABLE HAMMER

SUPERVISOR'S NAME:

SYIDATUL AKMA BINTI SULAIMAN

LECTURER'S NAME:
AHMAD NAJMIE BIN RUSLI

GROUP:

J4EM1105B

NO.	NAME	STUDENT ID
1	MUHAMMAD IRFAN HAKIMI BIN RAMLI	2017254126
2	MUHAMMAD ADIB BIN RAMLI	2017227852
3	NURUL AMIRAH BINTI MOHD NOOH	2017228044
4	NUR SURAYA BINTI AMAD MAZNI	2017249834

ACKNOWLEDGEMENT

We would like to express our gratitude and appreciation to all those who gave us the possibility to complete this report. A special thanks to our lecturer, Mr Ahmad Najmie Bin Rusli, whose help, stimulating suggestions and encouragement, helped us to coordinate our project.

We would also like to acknowledge with much appreciation the crucial role of staff of Mechanical Laboratory, who gave the permission to use all required machinery and the necessary materials to complete our prototype fabrication process.

A special thanks goes to our team mates, Muhammad Irfan Hakimi Bin Ramli, Muhammad Adib Bin Ramli, Nurul Amirah Binti Mohd Nooh and Nur Suraya Binti Amad Mazni, who gave fully contribution in this project.

Last but not least, many thanks go to our supervisor, Madam Syidatul Akma Binti Sulaiman whose have given her full effort in guiding the team in achieving the goal as well as her encouragement to maintain our progress in track. We would like to appreciate the guidance given by other supervisor as well as the panels especially in our project presentation that has improved our presentation skills by their comment and tips.

ABSTRACT

Hammering is the most widely used in manufacturing industries as well as in construction activities. Most of the hammers are manually operated and used to fit the parts, to forge the metal and breaks parts of the objects. Manual hammering will need extra energy and time consuming. Moreover, it quite difficult to ensure the consistency in hammering because it depends on the force given by the workers while doing the job. An Automated Portable Hammer was designed to overcome these issues. In this project an automated hammering system allows for fully automatic hammering process by innovating the existing hammer. This allow for accurate, fast and automated hammering wherever whenever needed using a 12V power supply. The DC motor was attached to the pulley and connected to the connecting rod to move the hammer. The other end of hammer was connected to this connecting rod through a mid-swinging arrangement in order to achieve desired hammer motion with enoughtorque. Moreover, a toggle switch was used to connect and disconnect the power supply from the motor. The cast iron plate was used as a bed for placing the object. As a result, this automated hammering product will improve the consistency in hammering as well as drastically reduce the effort required during hammering.

TABLE OF CONTENT

CONTENT	PAGES		
CAHPTER 1: INTRODUCTION			
1.1 Problem statement	1		
1.2 Objectives	1		
1.3 Significant of the Project	1		
1.4 Project Management	2-3		
CHAPTER 2: DESIGN PROBLEM DEFINITION			
2.1 Market Analysis	4-6		
2.2 Competitive Bench-marking Product	7		
2.3 Final Product Design Specification	8-9		
CHAPTER 3: CONCEPT GENERATION & SELECTION			
3.1 Feasible Concepts	10		
3.2 Morphological Chart	11-14		
3.3 Selection of Final Concept	15-16		
CHAPTER 4: EMBODIMENT DESIGN			
4.1 Product Architecture	17		
4.2 Configuration Design	18-19		
4.3 Parametric Design for Custom Parts	20-22		
CHAPTER 5: DETAIL DESIGN			
5.1 Engineering Drawing	23-48		
5.2 Costing Evaluation	49		
CHAPTER 6: PROTOTYPING AND TESTING			
6.1 Fabrication Process	50-52		
6.2 Testing and Design: The Oretical Calculation and	53		
Simulation			
6.3 Results and Discussion	54-56		
CHAPTER 7: CONCLUSION AND RECOMMENDATION			
7.1 Conclusion on Design Product	57		
7.2 Future Works	58		
REFERENCES	59		
APPENDICES	60		

LIST OF FIGURES

NO	FIGURES	PAGES
1	Figure 1.4 Flowchart of Project Management	2
2	Figure 2.1.2-1 Data Collected from The Survey	5
3	Figure 2.1.2-2 Answer Based On The Survey Conducted	6
4	Figure 2.3 Sketch of Automated Portable Hammer	8
5	Figure 4.1 Schematic Diagram for Automated Portable Hammer	17
6	Figure 5.1.1-1 Details Drawing of Part 1	24
7	Figure 5.1.1-2 Details Drawing of Part 2	25
8	Figure 5.1.1-3 Details Drawing of Part 3	26
9	Figure 5.1.1-4 Details Drawing of Part 4	27
10	Figure 5.1.1-5 Details Drawing of Part 5	28
11	Figure 5.1.1-6 Details Drawing of Part 6	29
12	Figure 5.1.1-7 Details Drawing of Part 7	30
13	Figure 5.1.1-8 Details Drawing of Part 8	31
14	Figure 5.1.1-9 Details Drawing of Part 9	32
15	Figure 5.1.1-10 Details Drawing of Part 10	33
16	Figure 5.1.1-11 Details Drawing of Part 11	34
17	Figure 5.1.1-12 Details Drawing of Part 12	35
18	Figure 5.1.1-13 Details Drawing of Part 13	36
19	Figure 5.1.1-14 Details Drawing of Part 14	37
20	Figure 5.1.1-15 Details Drawing of Part 15	38
21	Figure 5.1.1-16 Details Drawing of Part 16	39
22	Figure 5.1.1-17 Details Drawing of Part 17	40
23	Figure 5.1.1-18 Details Drawing of Part 18	41
24	Figure 5.1.1-19 Details Drawing of Part 19	42
25	Figure 5.1.1-20 Details Drawing of Part 20	43
26	Figure 5.1.1-21Details Drawing of Part 21	44
27	Figure 5.1.1-22 Details Drawing of Part 22	45