SYNTHESIS OF SOLID HETEROGENEOUS CATALYST FROM RUBBER SEED SHELL MODIFIED WITH CALCIUM OXIDE FOR BIODIESEL PRODUCTION

NURUL FARHANAH BINTI ZAKARIA

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2020

TABLE OF CONTENTS

	Page
ACKNOWLEGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significant of study	6
1.4	Objectives of study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Catalyst	8
	2.1.1 Homogeneous catalyst	8
	2.1.2 Heterogenous catalyst	10
2.2	Biomass-derived heterogenous catalyst	12
	2.2.1 Catalyst reusability	15
2.3	Biodiesel production	16

CHAPTER 3 METHODOLOGY

3.1	Sample	19	9
3.2	Chemical	19	9
3.3	Apparatus	19	9
3.4	Instrumentation	20	0
3.5	Preparation of catalyst	20	0
	3.5.1 Pre-treatment of biomass	20	0
	3.5.2 Preparation of RSS supported calci	um oxide catalyst 20	0
3.6	Characterization of catalyst	2	1
3.7	Evaluation of catalytic activity	2	1

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Characterization of catalyst		24
	4.1.1	Thermogravimetric Analysis	24
	4.1.2	Fourier-Transform Infrared Spectroscopy	26
	4.1.3	Scanning Electron Microscopy-Energy Dispersive X-ray	28
4.2	Evalua	tion of CaO/RSS catalytic activity	31
4.3	Verific	ation of FAME composition	33

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
CITED REFERENCES	38
APPENDICES	44
CURRICULUM VITAE	50

LIST OF FIGURES

Figure	Caption	Page
2.1	Transesterification reaction	18
4.1	TGA-DTG curve for raw dried RSS	25
4.2	IR spectrum of calcined RSS and CaO/RSS catalyst	28
4.3	Calcined RSS at 700°C (a) 1000x magnification (b) 5000x magnification (c) element spectrum (d) element mapping	29
4.4	CaO/RSS catalyst (a) 1000x magnification (b) 5000x magnification (c) element spectrum (d) element mapping	30
4.5	The effect of catalyst loading on the biodiesel yield	32
4.6	GC-MS chromatogram of FAME (10 wt% of CaO/RSS)	35

ABSTRACT

SYNTHESIS OF SOLID HETEROGENEOUS CATALYST FROM RUBBER SEED SHELL MODIFIED WITH CALCIUM OXIDE FOR BIODIESEL PRODUCTION

Biomass can be manipulated as a promising heterogenous catalyst that provides greener synthesis route for sustainable production of biodiesel. A calcium oxide (CaO) supported on rubber seed shell (RSS) catalyst was synthesized, characterized and successfully used for transesterification of waste cooking oil (WCO) into biodiesel. The catalyst was prepared by impregnating calcium nitrate tetrahydrate, (Ca(NO₃)₂.4H₂O) onto RSS carbon support with weight ratio of 1:4. The catalyst was characterized by using Thermogravimetric Analyzer (TGA), Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy equipped with Energy-Dispersive X-ray (SEM-EDX) to examine their physicochemical properties. Transesterification of WCO was conducted for 3 hours with 1:12 oil to methanol molar ratio at temperature of 70°C by using various catalyst loading. In the present study, the highest biodiesel yield obtained was 68.6% by employing 10 wt% of catalyst loading. Qualitative analysis of Gas Chromatography equipped with Mass Spectroscopy (GC-MS) exhibited that six types of methyl ester were found in the collected upper layer thus confirmed that the free fatty acid (FFA) in WCO had been successfully converted to the desired biodiesel. Therefore, the present study verified that CaO/RSS catalyst was one of the suitable catalysts for biodiesel production.