EXTRACTION OF NAPHTHENIC ACIDS FROM ACIDIC PETROLEUM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE WITH THE AID OF CA/AL₂O₃ AND CE/AL₂O₃ CATALYSTS

EMILYSA IZANI BT MOHD FADZIL

BACHELOR OF SCIENCE (Hons.) CHEMISTRY FACULTY APPLIED SCIENCE UNIVERISITI TEKNOLOGI MARA

JANUARY 2020

TABLE OF CONTENTS

D	000	
r	age	

ACKNOWLEDGEMENT		i
TABI	LE OF CONTENTS	ii
LIST	OF FIGURES	iv
LIST	OF ABBREVIATIONS	V
ABST	'RACT	vi
ABST	`RAK	vii
CHAI	PTER 1 INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	4
1.3	Significant of study	6
1.4	Objectives of study	6
-	PTER 2 LITERATURE REVIEW	7
2.1	Naphthenic Acids Removal	7
2.1.1		7
2.1.2	Liquid-liquid Extraction	10
2.1.3	5	12
2.1.4	1	14
2.1.5	Physical Adsorption	16
2.1.6	Catalytic Deacidification	17
CILAI	ΥΈΡ 2 ΜΕΤΙΙΟΡΟΙ ΟΩΥ	10
	PTER 3 METHODOLOGY	19
3.1	Materials and Feedstock	19
3.2	Catalyst Preparation	19
3.3	Catalytic Characterization	20
3.3.1	Fourier Transform Infrared Spectroscopy (FTIR)	20
3.3.2	Thermogravimetry Analysis-Differential	21
3.4	Extraction Process	21
3.5	Total Acid Number (TAN) Determination	22
CILAI		22
CHAI 4.1	PTER 4 RESULTS AND DISCUSSION	23 23
4.1.1	Catalytic Characterization	23
4.1.1	Thermogravimetric Analysis-Differential	23 26
4.1.2 4.2	Fourier Transform Infrared Spectroscopy (FTIR)	26 29
4.2 4.3	Total Acid Number (TAN) Determination	
	Deacidification without catalyst	30
4.4	Effect of Reaction Time	31
4.5	Effect of Catalyst Loadings	33
4.6	Reusability Testing	36

CHAPTER 4 : RESULTS AND DISCUSSION

4.1	Synthesis of DTC ligand from primary amine	20
4.2	Synthesis of Na-DPDTC from secondary amine	25
4.3	Synthesis of metal Complexes (NI (II) and Cu (II))	29

CHAPTER 5 : CONCLUSION AND RECOMMENDATION

5.1	Conclusion	38
5.2	Recommendation	39
CITED REFERENCES		40
APPENDICES		42
CURRICULUM VITAE		48

LIST OF TABLES

Table	Caption	Page
4.1	Interpretation of Infrared for Nickel (II) complex-APTES	23
4.2	¹ H NMR results for Nickel (II) complex-APTES	24
4.3	Interpretation of Infrared for diphenyldithiocarbamate	26
4.4	¹ H NMR results for diphenyldithiocarbamate	27
4.5	¹³ C NMR results for diphenyldithiocarbamate salt	27
4.6	Infrared interpretation for Nickel (II) complex	30
4.7	¹ H NMR results for Nickel (II) complex	31
4.8	¹³ C NMR results for Nickel (II) complex	31
4.9	Infrared interpretation for copper (II) complex	33
4.10	¹ H NMR results for copper (II) complex	34
4.11	¹³ C NMR results for copper (II) complex	34
4.12	Molecular Formula, Molecular Weight, Colour, Percent Yield and Elemental Analysis of all the Compounds	37

ABSTRACT

NAPHTHENIC ACID REMOVAL FROM PETROLEUM CRUDE OIL UTILIZING 2-METHYLIMIDAZOLE IN POLYETHYLENE GLYCOL WITH THE AID OF Ca/Al₂O₃ AND Ce/Al₂O₃

Naphthenic Acids (NAs) found in crude oil is the major causes of corrosion problems in oil pipelines, distillation unit, storage, and fascilities. As a result, crude oil with high NA will be marketed at lower price and considered as low quality. In this study, catalytic extraction reaction was done in order to lowering the Total Acid Number (TAN) in crude oil to below than one mg KOH/g utilizing 2-methylimidazole with the aid of monometallic Ca/Al₂O₃ and Ce/Al₂O₃ catalysts. The catalyst was supported on the alumina beads by Incipient Wetness Impregnation (IWI) methods and calcined at calcination temperature of 700°C. Thermogravimetry Analysis-Differential Thermal Analysis (TGA-DTA) was used to determine the suitable calcination temperature for both catalysts. Petronas Penapisan Melaka crude oil was selected to be tested with TAN of 5.30 mg KOH/g. The parameters studied were catalyst loading, and reaction times. The catalytic reaction was fixed at reaction temperature at 27°C The result shows that Ca/Al₂O₃ and Ce/Al₂O₃ catalysts successfully reduced TAN value in acidic crude oil below than 1.00 mg KOH/g. Ca/Al₂O₃ catalyst gave a better reduction with 0.08 mg KOH/g of TAN value compared to Ce/Al₂O₃ catalyst which only reduced to 0.65 mg KOH/g of TAN value. Stretching modes of pure metal oxide (M=O) were detected before and after the reaction while CH₃ stretching, carboxylic acid (C=O) and CH₂ and CH₃ bend was detected after the reaction which indicates that there were impurities has been adsorbed on both catalyst by FTIR analysis. As a conclusion, Ca/Al₂O₃ is the best catalyst compared to Ce/Al₂O₃ since it lowered down acid number in crude oil to lowest value than Ce/Al₂O₃ catalyst. The catalytic method of extraction technique successfully in extract NAs from the crude oil. Thus, reducing the TAN value to less than 1 mg KOH/g.