

EM110 DIPLOMA OF MECHANICAL ENGINEERING FAKULTI KEJURUTERAAN MEKANIKAL UITM CAWANGAN JOHOR, KAMPUS PASIR GUDANG

MEC332 MECHANICAL ENGINEERING DESIGN

PROJECT:

MULTIPURPOSE FOOD SLICER

SUPERVISOR'S NAME:

NORHISYAM BIN JENAL

LECTURER'S NAME:

MOHD NOOR HALMY BIN AB LATIF

GROUP:

J4EM1105F

NO.	NAME	STUDENT ID
1	MUHAMAD ANIQ HAZMAN BIN HAIROZIE	2017249926
2	MUHAMMAD HAZIQ BIN BAHARUDIN	2017253736
3	ALIFF JOHAN BIN ABDUL JALIL	2017254178
4	MOHD ZAID KHAIR BIN MOHD KASIM	2017253546

ACKNOWLEDEGEMENT

Assalamualaikum w.b.t. Firstly we would like to thanks to Allah S.W.T because we finally completed this final year project for Mechanical Engineering Design (MEC332). The preparation of this project has been a truly collaborative effort between the group members, lecturers and assistant engineer. I would like to express my special appreciation thanks of gratitude to our supervisor, Sir Norhisyam bin Jenal and assistant engineer in Faculty of Mechanical Engineering, UiTM Pasir Gudang for their valuable and limitless guidance, encouragement and cooperation throughout this project progress. We also want to thanks them because they gave us the opportunity to do this great project.

Secondly, we would like to thanks all of our group members who had always been dedicated and contributing all of their time, ideas and energy in making this project successful and follow the timeline. Without every member's support, this final year project prototype and report is really impossible to complete.

Last but not least, we would also like to thank our parents and family members who also struggled to provide us any possible facilities and support with this project. All of them have been support to us in terms of finance, knowledge, prayers and also guidance to successfully finish our final year project. Finally, I would like to thank all my friends who help us in making this project.

ABSTRACT

Food slicer is widely used nowadays and it have many types of it. Our project which is multipurpose food slicer machine is to slice food with the fastest way. The existing slicer is consuming a lot of time and high energy of labour. Furthermore, the manual slicer such as rotary and linear motion can cause fatigue and high energy consumption. We called it multipurpose food slicer because it can slice and mince. The design of our product are ergonomic which mean it works in effective manner and ease the consumer while using it. Furthermore, the machine also designs to be portable and save space. Thus, the product can be keep in a limited space. This machine is fully automated slicing machine and suitable for small medium enterprise (SME), caterer and food and beverages (F&B). This product has the commercial values that the reference product has.

TABLE OF CONTENTS

Contents		
Chapter 1: Introduction		
1.1 Problem Statement	2	
1.2 Objective	2	
1.3 Significance of The Project	2	
1.4 Project Management	3	
Chapter 2: Design Problem Definition	4-11	
2.1 Market Analysis	4	
2.1.1 Targeted Market and Estimation of Market Size	5	
2.1.2 Customer Needs and Identification	6-8	
2.2 Competitive Benchmarking Product	9-10	
2.3 Final Product Design Specification	11	
Chapter 3: Concept Generation and Selection		
3.1 Feasible Concepts	12	
3.2 Morphological Analysis	12	
3.2.1 Concept 1	13	
3.2.2 Concept 2	14	
3.2.3 Concept 3	15	
3.2.4 Concept 4	16	
3.2.5 Concept 5	17	
3.3 Selection of Final Concept	18	
3.3.1 Pugh Chart Analysis	18-19	
Chapter 4: Embodiment Design		
4.1 Product Architecture	20	
4.2 Configuration Design		
4.2.1 List of Parts	21	
4.2.2 Details Standard and Part Selection	21	

4.3 Parametric Design for Custom Parts		
Chapter 5: Detail Design		
5.1 Engineering Drawing	24	
5.1.1 Detail Drawings of Manufactured Parts	24-29	
5.1.2 Assembly Drawings	29	
5.1.3 Exploded Drawings	30	
5.1.4 Bill of Material	31	
5.2 Costing Evaluation	31	
5.2.1 Break Even Analysis	31	
Chapter 6: Prototyping and Testing		
6.1 Fabrication Process	32-33	
6.2 Testing of Design: Theoretical Calculation and Simulations		
6.3 Results and Discussion	36	
Chapter 7: Conclusion and Recommendation		
7.1 Conclusions on Designed Product	37-38	
7.2 Future Works	39	
References		
Appendices		