THE VALIDATION MULTISTAGE DISCRETE WAVELET TRANSFORMATION TECHNIQUE FOR IDENTIFICATION OF TRANSIENT DISTURBANCES

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN

PENGKOMERSILAN

UNIVERSITI TEKNOLOGI MARA

40450 SHAH ALAM, SELANGOR

MALAYSIA

BY:

AHMAD FARID ABIDIN

ZAIRI ISMAEL RIZMAN

ACKNOWLEDGEMENT

All praise is to Allah, Lord of Universe, the Merciful and Beneficent. Salam to Nabi Muhammad S.A.W., his companions, his friends and the people who follow his path. My everlasting thank to ALLAH for granting me patience and hope in completing this thesis.

The authors express their sincere gratitude to the Institute of Research, Development and Commercialization (IRDC) for providing the grant of this project. Special thank to Associate Professor Mohd Zaki bin Abdullah from UiTM Penang for his generosity by providing the important data. Without his help, it is almost impossible to successfully complete this research.

Finally, the authors wish thankful to all parties, those involved directly or indirectly upon completing this research.

Thank you

ABSTRACT

Transient disturbance is among the power disturbances that commonly occurred in electrical system. One of popular technique to extract this disturbance feature is the multistage Discrete Wavelet Transform (DWT) technique. This research is done in order to validate the ability of multistage DWT technique particularly Daubhechies2 (DB2), Daubhechies3 (DB3), Daubhechies4 (DB4) and Daubhechies5 (DB5) for identifying transient disturbance. The results that obtain from the DWT technique are compared with the Reliable Power Meter (RPM) database. RPM database is extensively used for Power Quality (PQ) and transient disturbances analysis. All the corresponding has been implemented through MATLAB software.

Acknowledgement	ii
Abstract	iii
Table of Content	iv
List of Figure	vii
List of Table	ix
List of Abbreviation	х

TABLE OF CONTENT

CHAPTER	DESCRIPTION	PAGE
---------	-------------	------

1.0		INTR	ODUCTION	1
		1.1	Introduction	1
		1.2	Literature Review	2
		1.3	Problem Statement	3
		1.4	Scope of Project	4
		1.5	Organization of Reports	5
	-*			
2.0		ELEC	TRIC POWER QUALITY	6
		2.1	Introduction	6
		2.2	The Importance of Power Quality (PQ)	6

2.3Types of Power Quality Problems7

2.4 Power Quality (PQ) Phenomena 8

			2.4.1	Voltage Sag	10	
			2.4.2	Voltage Swell	11	
			2.4.3	Interruption	11	
			2.4.4	Oscillatory Transient	12	
			2.4.1	Impulsive Transient	12	
		2.5	Conclus	ion	13	
	3.0	CLA	CLASSICAL POWER DISTURBANCE ANALYSIS			
		3.1	Introduction			
		3.2	Comput	er Business Equipment Manufacturers	14	
			Associa	tion (CBEMA) Curve		
		3.3	Type of Disturbance in CBEMA 16			
		3.4	CBEMA	Curve in Power Quality (PQ) Field Research	18	
		3.5	Conclus	sion	20	
	4.0	WAV	VELET PR	OCESSING TECHNIQUE	21	
		4.1	Introdu	ction	21	
		4.2	Wavele	t Transformation (WV)	21	
		4.3	Discrete	e Wavelet Transform	23	
		4.4	Wavele	t Selection Technique	27	
		4.5	Analysi	s and Results	28	
			4.5.1	Analysis 1: Event 2022	29	
			4.5.2	Analysis 1: Event 962	32	
			4.5.3	Analysis 1: Event 2680	34	
		4.6	Theoret	ical Analysis of DWT	36	