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CHAPTER 15 

Characterization of p-Groups with a Maximal 

Irredundant 10-Covering 

 

Rawdah Adawiyah Tarmizi and Hajar Sulaiman 
 

 

Abstract. A group G is covered by a collection of its proper 

subgroups if it is equal to the union of the collection. A covering is 

called irredundant if there is no proper sub-collection is also a 

covering of G. A covering in which all members are maximal 

subgroups of G is called maximal. For any integer n >2, a covering 

with n members is called an n-covering. We say the covering of G as 

Cn–covering if it is an irredundant maximal core-free n-covering for 

G. In this paper, we characterize 3-groups having a maximal 

irredundant 10-covering with core-free intersection and we prove that 

a group G is a p-group having C10–covering if and only if  𝐺 ≅ (𝐶3)
5 

or 𝐺 ≅ (𝐶5)
3. 
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1 Introduction 
 

Let G be a finite group. If G is non-cyclic, then G can be obtained as a union 

of its proper subgroups. A covering C of a group G is a collection of proper 

subgroups of G whose union is the whole group G. We use the term n-

covering for C with n members. 

A covering C of G is irredundant if no proper sub-collection is also a 

covering for G, and is called maximal if all its members are maximal 

subgroups of G. We denote the intersection of members of maximal covering 

by D. A covering C of G is called core-free if the intersection 𝐷 = ⋂ 𝑀𝑀∈𝐶  of 

C is core-free in G, i.e. 𝐷𝐺 = ⋂ 𝑔−1𝐷𝑔𝑔∈𝐺  is the trivial subgroup of G. The 

covering C of G is called a Cn–covering whenever C is an irredundant 

maximal core-free n-covering for G. We say a group G is a Cn–group if G 

admits Cn–covering. 

It is well known that there is no group can be covered by two proper 

subgroups. Scorza in [8] was the first to determine the structure of all groups 

having an irredundant 3-covering with core-free intersection. 

 
Theorem 1.1. (See [8]) Let {𝐴𝑖  | 1 ≤ 𝑖 ≤ 𝑚} be an irredundant covering with 

core-free intersection D for a group G. Then, D = 1 and 𝐺 ≅ 𝐶2 × 𝐶2. 

 
In [7] Greco listed all groups with an irredundant 4-covering with core-free 

intersection. He also listed all groups with an irredundant 5-covering in which 

all pairwise intersection are the same.  

Bryce et al. in [6] characterized groups with maximal irredundant core-

free intersection 5-covering completely. They proved that G is a p-group if 

and only if G is elementary of order 24 = 16. 

Abdollahi et al. in [3] characterized groups with maximal irredundant 6-

covering with core-free intersection.  

In [4] Abdollahi and Jafarian listed all groups having a maximal 

irredundant 7-covering with core-free intersection.  

Abdollahi et al. in [1] characterized of p-groups with a maximal 

irredundant n-covering with core-free intersection for 𝑛 ∈ {7,8,9} completely. 

Ataei in [5] characterized nilpotent group having a maximal irredundant 

8-covering with core-free intersection.  

In [2] Ataei and Sajjad characterized 5-groups with a maximal 

irredundant 10-covering with core-free intersection. 

 
Theorem 1.2. (See [2]) Let G be a 5-groups such that |𝐺| ≠ 54. Then G is a 

C10–group, if and only if 𝐺 ≅ (𝐶5)
3. 
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There are problems of similar nature with slightly different aspects have been 

studied by many authors ([11], [12], [13], [14], [15]). 

Here we characterized 3-groups having a maximal irredundant 10-

covering with core-free intersection. Then we prove that G is a p-group that 

admits C10–covering if and only if 𝐺 ≅ (𝐶3)
5or  𝐺 ≅ (𝐶5)

3. 

Also, we use the notation as in [2]; for example, Cn the cyclic group of 

order n, (𝐶𝑛)
𝑗 is the direct product of  j copies of Cn, [n] is the set {1, … , 𝑛}, 

and [𝑛]𝑚 is the set of all subsets of [n] of size m.  

 

 

2 Preliminaries 
 

We will require the following lemma as an aid tool to obtain our results. 

 
Lemma 2.1. (See [9], Proposition 2.5) Let G be a finite p-group for a prime p, 

with a maximal irredundant n-covering. Then either 𝑛 ≥
3(𝑝+1)

2
 or 𝑛 = 𝑝 + 1. 

 

Lemma 2.2. (See [1], Theorem 1.3) Let G be a finite 2-group and n be a 

positive integer. Then G admits aCn+1–covering if and only if n is even and 

𝐺 ≅ (𝐶2)
𝑛. 

 

Lemma 2.3. (See [6], Lemma 2.2). Let 𝛤 = {𝐴𝑖 | 1 ≤ 𝑖 ≤ 𝑚} be an 

irredundant covering of a group G whose intersection of the members is D. 

(a) If p is a prime, x a p-element of G and |{𝑖 | 𝑥 ∈ 𝐴𝑖}| = 𝑛, then either 

𝑥 ∈ 𝐷 or 𝑝 ≤ 𝑚 − 𝑛. 

(b) ⋂ 𝐴𝑗 = 𝐷 ∀ 𝑖 ∈ {1,2, … ,𝑚}𝑗≠𝑖 . 

(c) If ⋂ 𝐴𝑖 = 𝐷  𝑖∈𝑆 whenever |𝑆| = 𝑛, then |⋂ 𝐴𝑖 ∶ 𝐷𝑖∈𝑇 | ≤ 𝑚 − 𝑛 +
1 whenever |𝑇| = 𝑛 − 1. 

(d) If Γ is maximal and U is an abelian minimal normal subgroup of G, 

then if|{𝑖 | 𝑈 ⊆ 𝐴𝑖}| = 𝑛, either 𝑈 ⊆ 𝐷 or|𝑈| ≤ 𝑚 − 𝑛. 

Lemma 2.4. (See [1], Lemma 3.2). Let G be a finite p-group having a Cn–

covering {𝑀𝑖  | 𝑖 = 1, … , 𝑛}. Then 

(a) 𝑝 ≤ 𝑛 − 1. 
(b) If s the integer such 1 ≤ 𝑠 ≤ 𝑛 − 2  and 𝑝 = 𝑛 − 𝑠, then ⋂ 𝑀𝑖 = 1𝑖∈𝑆  

for every subset S of {1,2, … , 𝑛}with |𝑆| ≥ 𝑠 + 1. 

(c) 𝑖𝑓 𝑛 = 𝑝 + 1, then 𝐺 ≅ (𝐶𝑝)
2
. 

Lemma 2.5. (See [1], Lemma 3.3). Let 𝐺 = (𝐶𝑝)
𝑑 
 𝑓𝑜𝑟 𝑑 ≥ 2 and p is a 

prime number. Suppose that G has Cn–covering {𝑀𝑖  | 𝑖 = 1, … , 𝑛}.  Let 𝑇 ⊆
{1,2, … , 𝑛}. 

(a) If |𝑇| = 𝑛 − 𝑝, then |⋂ 𝑀𝑖𝑖∈𝑇 | = 1 or p. 
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(b) If |𝑇| = 2, then |⋂ 𝑀𝑖𝑖∈𝑇 | = 𝑝 𝑑−2 . 
(c) ⋂ 𝑀𝑖𝑖∈𝑇 = 1 for some T of size d. 

(d) 𝐼𝑓 ⋂ 𝑀𝑖𝑖∈𝑆 = 1 whenever|𝑆| = 𝑑 , then 𝑝 ≤ |⋂ 𝑀𝑖𝑖∈𝑇 | ≤ 𝑛 − 𝑑 +
1 whenever |𝑇| = 𝑑 − 1. 

3 Result 
 

In this section we characterize p-groups with a maximal irredundant 10-

covering. 

 
Theorem 3.1. Let G be a 3-group such that |𝐺| ≠ 34. Then G is a C10–group, 

if and only if 𝐺 ≅ (𝐶3)
5. 

 

Proof. Suppose that G is a 3-group, 𝐺 = ⋃ 𝑀𝑖  
10
𝑖=1 and 𝐷 = ⋂ 𝑀𝑖

10
𝑖=1 . Since the 

Frattini subgroups of G, 𝜙(𝐺) = 𝐺 ′𝐺3 ≤ 𝐷, we have D is a normal subgroup 

of G. Therefore D = 1 and G is an elementary abelian 3-group.By Lemma 

2.5(b) 

|𝐺:𝑀𝑖| = 3 and |𝐺:𝑀𝑖 ∩𝑀𝑗| = 3
2 = 9 for all distinct 𝑖, 𝑗 ∈ [10]  (15) 

and by lemma 2.4(b) implies that  

∀ 𝑆 ⊆ [10] with 𝑆 ≥ 10 − 3 + 1 = 8, ⋂ 𝑀𝑖𝑖∈𝑆 = 1 (2) 

It follows that |𝐺| ≤ 38. Since an elementary abelian group of order 32 has 

only four maximal subgroups, we have |𝐺| ≥ 33.  
Let |𝐺| = 33, so that 𝐺 ≅ (𝐶3)

3. We have used the following function 

run in GAP [16] to proof the claim. The inputs of the function are a group and 

a number of covering, and the outputs are all combinations of maximal 

irredundant 10-covering with core free intersection of G, and if there is no 

such covering for G, then the list is empty. 

 
f:=function(G,p) local S,M,n,i,C,T,Q,R; 

n:=Size(G); 

M:=MaximalSubgroups(G); 

C:=Combinations(M,p); 

S:=[]; 

for i in [1..Size(C)] do if Size(Union(C[i]))=n then 

Add(S,C[i]); 

fi;od; 

T:=[]; 

for i in [1..Size(S)] do if 

Size(Core(G,Intersection(S[i])))=1 then Add(T,S[i]); 



 

145 
 

fi;od; 

R:=[]; 

for i in [1..Size(T)] do Q:=Combinations(T[i],p-1); 

if (n in List(Q,i->Size(Union(i))))=false then 

Add(R,T[i]); 

fi;od; 

return R; 

end; 

 
finally, we found that the list is empty, and therefore |𝐺| ≠ 33.  Assume that 

|𝐺| = 35, so that  𝐺 ≅ (𝐶3)
5. By GAP in [16], we can check that if 𝐺 =

〈𝑎, 𝑏, 𝑐, 𝑑〉, then the set  

 

 𝐶 = {〈𝑎, 𝑏, 𝑐, 𝑑〉, 〈𝑎, 𝑏, 𝑐, 𝑒〉, 〈𝑎, 𝑏, 𝑑, 𝑒〉, 〈𝑎, 𝑐, 𝑑, 𝑒〉, 〈𝑏, 𝑐, 𝑑, 𝑒〉, 〈𝑎𝑐−1, 𝑏, 𝑑, 𝑒〉, 
〈𝑎, 𝑏, 𝑐𝑒, 𝑑〉, 〈𝑎−1𝑏, 𝑎−1𝑐, 𝑎−1𝑑, 𝑎−1𝑒〉, 〈𝑎, 𝑏, 𝑐, 𝑑𝑒〉, 〈𝑎𝑒, 𝑎−1𝑏, 𝑎−1𝑐, 𝑎−1𝑑〉}  

 
of maximal subgroups form a C10–covering for G. 

Let |𝐺| = 36. By part (c) of Lemma 2.5, we assume that there exist  𝑆 ∈
[10]6 such that |⋂ 𝑀𝑖∈𝑆 𝑖

| = 1. Since the covering is irredundant, therefore 

there exist  𝑆 ∈ [10]2 such that for all 𝑇 ∈ [10]6, 𝑂 = ⋂ 𝑀𝑖𝑖∈𝑇 ≰ ⋂ 𝑀𝑖𝑖∈𝑆 . 

Therefore,  

 

|𝐺| = 36 = |𝐺:⋂ 𝑀𝑖
8

𝑖∈1
| = |𝐺:⋂ 𝑀𝑖

6

𝑖∈1
| |𝐺:⋂ 𝑀𝑖

2

𝑖∈1
| = |𝐺: 𝑂|32 

|𝐺: 𝑂| = 34 

|𝑂| = 32, 

 

 

which is a contradiction by |⋂ 𝑀𝑖
6
𝑖∈1 | = 1. 

If |𝐺| = 37. Then Lemma 2.5 implies that ⋂ 𝑀𝑖∈𝑇 𝑖
= 1 for at least  𝑇 ∈

[10]7. Therefore, we assume that there exist  𝑆 ∈ [10]7 such that |⋂ 𝑀𝑖∈𝑆 𝑖
| =

1. Since the covering is irredundant, therefore there exist  𝑗 ∈ [10] such that 

for all 𝐿 ∈ [10]7, 𝑁 = ⋂ 𝑀𝑖𝑖∈𝐿 ≰ 𝑀𝑗. Therefore  

 

|𝐺| = 37 = |𝐺:⋂ 𝑀𝑖
8

𝑖∈1
| = |𝐺: 𝑁||𝐺:𝑀𝑗| = |𝐺: 𝑁|3 

|𝐺:𝑁| = 36 
|𝑁| = 3, 

 

which is a contradiction by |⋂ 𝑀𝑖
7
𝑖∈1 | = 1. 

Now assume that |𝐺| = 38. Then Lemma 2.5(c) implies that 
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|⋂ 𝑀𝑖∈𝑇 𝑖
| = 3 for every 𝑇 ∈ [10]7. (3) 

 

Then it follows from (1) that for every ∈ [10]3 , we have |𝐺:⋂ 𝑀𝑖∈𝐾 𝑖
| = 35or 

36. Now we prove that |⋂ 𝑀𝑖∈𝐾 𝑖
| = 35 for all 𝐾 ∈ [10]3. Suppose, for 

contradiction, that there exist 𝐿 ∈ [10]3 such that |⋂ 𝑀𝑖∈𝐿 𝑖
| = 36. Let 𝐿′ ∈

[10]4such that 𝐿 ∩ 𝐿′ = ∅. Then it follows from (1) and (3) that 

|⋂ 𝑀𝑖∈𝐿⋃𝐿" 𝑖
| = |⋂ 𝑀𝑖∈𝐿′⋃𝐿" 𝑖

| = 3 for every 𝐿" is a proper subgroup of L of 

size 2. Since |𝐿" ∪ 𝐿′| = 6, it follows that  |𝐺| ≤ 36, which is a contradiction. 

Therefore, 

|⋂ 𝑀𝑖∈𝐾 𝑖
| = 35 for all 𝐾 ∈ [10]3. (4) 

By (1), |⋂ 𝑀𝑖∈𝑇 𝑖
| ∈ {34or 35} for all 𝑇 ∈ [10]4, we prove that |⋂ 𝑀𝑖∈𝑇 𝑖

| = 34 

for all 𝑇 ∈ [10]4. Suppose, for a contradiction that there exists 𝐿 ∈ [10]4 such 

that  |⋂ 𝑀𝑖∈𝐿 𝑖
| = 35. Let 𝐿′ ∈ [10]3 such that 𝐿 ∩ 𝐿′ = 𝜙. Then (1) and (3) 

imply that   

|⋂ 𝑀𝑖∈𝐿⋃𝐿" 𝑖
| = |⋂ 𝑀𝑖∈𝐿′⋃𝐿" 𝑖

| = 3 for every 𝐿" ⊂ 𝐿  of size 3. Since |𝐿" ∪

𝐿′| = 6, it follows that  |𝐺| ≤ 36, which is a contradiction. We conclude that, 

|⋂ 𝑀𝑖∈𝑇 𝑖
| = 34 for all 𝑇 ∈ [10]4. (5) 

By a similar argument as in the previous, we can prove that  

∀𝑉 ∈ [10]5, |⋂ 𝑀𝑖∈𝑉 𝑖| = 3
3 

(6) 

and  

∀𝑊 ∈ [10]6, |⋂ 𝑀𝑖∈𝑊 𝑖| = 3
2. (7) 

Now using (1) – (7), it follows from the inclusion-exclusion principle 

that 
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|⋃𝑀𝑖

10

𝑖=1

| = (
10

1
) 37 − (

10

2
) 36 + (

10

3
) 35 − (

10

4
) 34 + (

10

5
) 33 − (

10

16
) 32

+ (
10

7
) 3 − (

10

8
) + (

10

9
) − (

10

10
) = 6453, 

which is not 38, a final contradiction. 

 

Theorem 3.2. Let G be a C10–group. Then G is a p-group for a prime p if and 

only if 𝐺 ≅ (𝐶3)
5or 𝐺 ≅ (𝐶5)

3. 

 

Proof. Let G be a p-group with aC10–covering {𝑀𝑖|𝑖 ∈ [10]}. Since the 

Frattini subgroups of G, 𝜙(𝐺) = 𝐺 ′𝐺𝑝 ≤ 𝐷, we have D is a normal subgroup 

of G. Therefore D = 1 and G is an elementary abelian p-group. By Lemma 2.1 

implies that 𝑝 ≤ 5 and it follows from Lemma 2.2 that 𝑝 ≠ 2. Therefore 𝑝 =
3 or 𝑝 = 5. 

If 𝑝 = 5, then by Theorem 1.2 it follows that 𝐺 ≅ (𝐶5)
3.If  𝑝 = 3, then 

Theorem 3.1 implies that 𝐺 ≅ (𝐶3)
5. 
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