Quest for Research Excellence On Computing, Mathematics and Statistics

Editors
Kor Liew Kee
Kamarul Arififin Mansor Asmahani Nayan Shahida Farhan Zakaria

Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics (iCMS2015)

Editors:

Kor Liew Lee
Kamarul Ariffin Mansor
Asmahani Nayan
Shahida Farhan Zakaria
Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics
(iCMS2015)
4-5 November 2015
Langkawi Lagoon Resort
Langkawi Island, Kedah
Malaysia

Copyright © 2015 Universiti Teknologi MARA Cawangan Kedah

All rights reserved, except for educational purposes with no commercial interests. No part of this publication may be reproduced, copied, stored in any retrieval system or transmitted in any form or any means, electronic or mechanical including photocopying, recording or otherwise, without prior permission from the Rector, Universiti Teknologi MARA Cawangan Kedah, Kampus Merbok, 08400 Merbok, Kedah, Malaysia.

The views and opinions and technical recommendations expressed by the contributors are entirely their own and do not necessarily reflect the views of the editors, the Faculty or the University.

Publication by
Faculty of Computer \& Mathematical Sciences
UiTM Kedah

Content

International Scientific Committee
Preface
CHAPTER 1 1
Towards Ameliorating the Problem of Packet Dropping in IDS using P System Model on GPU
Rufai Kazeem Idowu, Ravie Chandren M., and Zulaiha Ali Othman
CHAPTER 2 11
Analyses of Software Testing Problems in Small and Medium Software Enterprises (SME's) and a Proposed Framework on Exploratory Testing
Murugan Thangiah and Shuib Basri
CHAPTER 3 25
Senior Citizen and Online Form: Hybrid Guideline Form Design
Zanariah Idrus, Nor Hafizah Abdul Razak, and Noor Hasnita Abdul Talib
CHAPTER 4 35
Research Paradigms in Computing Disciplines: A Review
Nor Hafizah Abdul Razak, Noor Hasnita Abdul Talib, and Jasmin Ilyani Ahmad
CHAPTER 5 41
Dijkstra's Algorithm In Product Searching System (Prosearch)
Nur Hasni Nasrudin, Siti Hajar Nasaruddin, Syarifah Syafiqah Wafa Syed Abdul Halim and Rosida Ahmad Junid
CHAPTER 6 49
Developing Waqf Land Computing: A Preliminary Study On The Used Of Web-based Applications And Spatial Database
Siti Nurbaya Ismail, Zanariah Idrus, Nor Hafizah Abdul Razak
CHAPTER 7 59
Implementation Of CORDIC Algorithm In Vectoring Mode
Anis Shahida Mokhtar, Abdullah bin Mohd Fadzullah
CHAPTER 8 71
A Description of Projective Contractions in the Orlicz- Kantorovich Lattice
Inomjon Ganiev and M. Azram
CHAPTER 9 83
The Geometry of the Accessible Sets of Vector Fields
A.Y.Narmanov, and I. Ganiev
CHAPTER 10 89
Existence Result of Third Order Functional Random Integro- Differential Inclusion
D. S. Palimkar
CHAPTER 11 105
Fourth Order Random Differential EquationD. S. Palimkar and P.R. Shinde
CHAPTER 12 115
New Concept of $e-I$-open and $e-I$-Continuous Functions
W.F. Al-omeri, M.S. Md. Noorani, and A. AL-Omari
CHAPTER 13 123
Visualization of Constrained Data by Rational Cubic Ball Function
Wan Zafira Ezza Wan Zakaria, and JamaludinMd Ali
CHAPTER 14 133
Octupole Vibrations in Even-Even Isotopes of DyA.A. Okhunov, G.I. Turaeva, and M. Jahangir Alam
CHAPTER 15 141
Characterization of p-Groups with a Maximal Irredundant 10- Covering
Rawdah Adawiyah Tarmizi and Hajar Sulaiman
CHAPTER 16 149
Sensitivity Index of HIV-1 model Parameters with Vertical transmission
Amiru Sule, Mamman Mamuda, Abdullahi Mohammed Baba, Jibril Lawal, and I.G. Usman
CHAPTER 17 163
Derivation of Four-Point Explicit Block Methods for Direct Solution of Initial Value Problems of Third Order Ordinary Differential Equations
Z. Omar, J. O. Kuboye, and Y.A. Abdullah
CHAPTER 18 175
Absolute Translativity of Generalized Nörlund Mean
Amjed Zraiqat
CHAPTER 19 189
Type I Error of the Modified Wilcoxon Signed Rank Test under Leptokurtic Distribution
Nor Aishah Ahad, Sharipah Soaad Syed Yahaya, Suhaida Abdullah, Lim Yai Fung and Zahayu Md Yusof
CHAPTER 20 199
The Combined EWMA-CUSUM Control Chart with Autocorrelation
Abbas Umar Farouk, and Ismail Bin Mohamad
CHAPTER 21 213
Estimating Philippine Dealing System Treasury (PDST)
Reference Rate Yield Curves using a State-Space Representation of the Nelson-Siegel Model
Len Patrick Dominic M. Garces, and Ma. Eleanor R. Reserva
CHAPTER 22 225
A Structural Equation Model Analyzing the Relationship Model on Perception Students toward Mathematics
Siti Fairus Mokhtar
CHAPTER 23 233
Partial Least Squares Based Financial Distressed Classifying Model of Small Construction Firms
Amirah-Hazwani Abdul Rahim, Ida-Normaya M. Nasir, Abd-Razak Ahmad, and Nurazlina Abdul Rashid
CHAPTER 24 245
Logit Bankruptcy Model of Industrial Product Firms
Asmahani Nayan, Siti-Shuhada Ishak, and Abd-Razak Ahmad
CHAPTER 25 255
Data Mining in Predicting Firms Failure: A Comparative Study Using Artificial Neural Networks and Classification and Regression Tree
Norashikin Nasaruddin, Wan-Siti-Esah Che-Hussain, Asmahani Nayan, and Abd-Razak Ahmad
CHAPTER 26 265
Risks of Divorce: Comparison between Cox and Parametric Models
Sanizah Ahmad, Norin Rahayu Shamsuddin, Nur Niswah Naslina Azid @ Maarof, and Hasfariza Farizad
CHAPTER 27 277
Reliability and Construct Validity of DASS 21 using Malay
Version: A Pilot Study
Kartini Kasim, Norin Rahayu Shamsuddin, Wan Zulkipli Wan Salleh, Kardina Kamaruddin, and Norazan Mohamed Ramli
CHAPTER 28 285
Outlier Detection in Time Series Model
Nurul Sima Mohamad Shariff, Nor Aishah Hamzah, and Karmila Hanim Kamil
CHAPTER 29 297
ROAD Algorithm for Control Charts
Gejza Dohnal
CHAPTER 30 311
Learning Numerals for Down Syndrome by applying Cognitive Principles in 3D Walkthrough
Nor Intan Shafini Nasaruddin, Khairul Nurmazianna Ismail, and Aleena Puspita A.Halim
CHAPTER 31 329
Predicting Currency Crisis: An Analysis on Early Warning System from Different Perspective
Nor Azuana Ramli
CHAPTER 32 341
Using Analytic Hierarchy Process to Rank Takaful Companies based on Health Takaful Product
Noor Hafizah Zainal Aznam, Shahida Farhan Zakaria, and Wan Asma 'a Wan Abu Bakar
CHAPTER 33 349
Service Discovery Mechanism for Service Continuity in Heterogeneous Network
Shaifizat Mansor, Nor Shahniza Kamal Basha, Siti Rafidah Muhamat Dawam, Noor Rasidah Ali, and Shamsul Jamel Elias
CHAPTER 34 361
Ranking Islamic Corporate Social Responsibility Activities under Product Development Theme using Analytic Hierarchy Process
Shahida Farhan Zakaria, Wan-Asma ' Wan-Abu-Bakar, Roshima Said, Sharifah Nazura Syed-Noh, and Abd-Razak Ahmad
CHAPTER 35 369
A Fuzzy Rule Base System For Mango Ripeness Classification
Ab Razak Mansor, Mahmod Othman, Noor Rasidah Ali , Khairul Adilah Ahmad, and Samsul Jamel Elias
CHAPTER 36 381
Technology Assistance for Kids with Learning Disabilities:
Challenges and OpportunitiesSuhailah Mohd Yusof, Noor Hasnita Abdul Talib, and Jasmin IlyaniAhmad

CHAPTER 15
 Characterization of p-Groups with a Maximal Irredundant 10-Covering

Rawdah Adawiyah Tarmizi and Hajar Sulaiman

Abstract

A group G is covered by a collection of its proper subgroups if it is equal to the union of the collection. A covering is called irredundant if there is no proper sub-collection is also a covering of G. A covering in which all members are maximal subgroups of G is called maximal. For any integer $n>2$, a covering with n members is called an n-covering. We say the covering of G as C_{n}-covering if it is an irredundant maximal core-free n-covering for G. In this paper, we characterize 3 -groups having a maximal irredundant 10-covering with core-free intersection and we prove that a group G is a p-group having C_{10}-covering if and only if $G \cong\left(C_{3}\right)^{5}$ or $G \cong\left(C_{5}\right)^{3}$.

Keywords: covering groups by subgroups; p-groups; maximal irredundant covering; core-free intersection.

[^0]
1 Introduction

Let G be a finite group. If G is non-cyclic, then G can be obtained as a union of its proper subgroups. A covering C of a group G is a collection of proper subgroups of G whose union is the whole group G. We use the term n covering for C with n members.

A covering C of G is irredundant if no proper sub-collection is also a covering for G, and is called maximal if all its members are maximal subgroups of G. We denote the intersection of members of maximal covering by D. A covering C of G is called core-free if the intersection $D=\bigcap_{M \in C} M$ of C is core-free in G, i.e. $D_{G}=\bigcap_{g \in G} g^{-1} D g$ is the trivial subgroup of G. The covering C of G is called a C_{n}-covering whenever C is an irredundant maximal core-free n-covering for G. We say a group G is a C_{n}-group if G admits C_{n}-covering.

It is well known that there is no group can be covered by two proper subgroups. Scorza in [8] was the first to determine the structure of all groups having an irredundant 3 -covering with core-free intersection.

Theorem 1.1. (See [8]) Let $\left\{A_{i} \mid 1 \leq i \leq m\right\}$ be an irredundant covering with core-free intersection D for a group G. Then, $D=1$ and $G \cong C_{2} \times C_{2}$.

In [7] Greco listed all groups with an irredundant 4-covering with core-free intersection. He also listed all groups with an irredundant 5-covering in which all pairwise intersection are the same.

Bryce et al. in [6] characterized groups with maximal irredundant corefree intersection 5 -covering completely. They proved that G is a p-group if and only if G is elementary of order $2^{4}=16$.

Abdollahi et al. in [3] characterized groups with maximal irredundant 6covering with core-free intersection.

In [4] Abdollahi and Jafarian listed all groups having a maximal irredundant 7 -covering with core-free intersection.

Abdollahi et al. in [1] characterized of p-groups with a maximal irredundant n-covering with core-free intersection for $n \in\{7,8,9\}$ completely.

Ataei in [5] characterized nilpotent group having a maximal irredundant 8 -covering with core-free intersection.

In [2] Ataei and Sajjad characterized 5-groups with a maximal irredundant 10 -covering with core-free intersection.

Theorem 1.2. (See [2]) Let G be a 5 -groups such that $|G| \neq 5^{4}$. Then G is a C_{10}-group, if and only if $G \cong\left(C_{5}\right)^{3}$.

There are problems of similar nature with slightly different aspects have been studied by many authors ([11], [12], [13], [14], [15]).

Here we characterized 3-groups having a maximal irredundant 10covering with core-free intersection. Then we prove that G is a p-group that admits C_{10}-covering if and only if $G \cong\left(C_{3}\right)^{5}$ or $G \cong\left(C_{5}\right)^{3}$.

Also, we use the notation as in [2]; for example, C_{n} the cyclic group of order $n,\left(C_{n}\right)^{j}$ is the direct product of j copies of $C_{n},[n]$ is the set $\{1, \ldots, n\}$, and $[n]^{m}$ is the set of all subsets of $[n]$ of size m.

2 Preliminaries

We will require the following lemma as an aid tool to obtain our results.
Lemma 2.1. (See [9], Proposition 2.5) Let G be a finite p-group for a prime p, with a maximal irredundant n-covering. Then either $n \geq \frac{3(p+1)}{2}$ or $n=p+1$.

Lemma 2.2. (See [1], Theorem 1.3) Let G be a finite 2-group and n be a positive integer. Then G admits $a C_{n+1}$-covering if and only if n is even and $G \cong\left(C_{2}\right)^{n}$.

Lemma 2.3. (See [6], Lemma 2.2). Let $\Gamma=\left\{A_{i} \mid 1 \leq i \leq m\right\}$ be an irredundant covering of a group G whose intersection of the members is D.
(a) If p is a prime, x a p-element of G and $\left|\left\{i \mid x \in A_{i}\right\}\right|=n$, then either $x \in D$ or $p \leq m-n$.
(b) $\cap_{j \neq i} A_{j}=D \forall i \in\{1,2, \ldots, m\}$.
(c) If $\bigcap_{i \in S} A_{i}=D$ whenever $\quad|S|=n$, then $\left|\cap_{i \in T} A_{i}: D\right| \leq m-n+$ 1 whenever $|T|=n-1$.
(d) If Γ is maximal and U is an abelian minimal normal subgroup of G, then $i f\left|\left\{i \mid U \subseteq A_{i}\right\}\right|=n$, either $U \subseteq D$ or $|U| \leq m-n$.

Lemma 2.4. (See [1], Lemma 3.2). Let G be a finite p-group having a $C_{n}-$ covering $\left\{M_{i} \mid i=1, \ldots, n\right\}$. Then
(a) $p \leq n-1$.
(b) If s the integer such $1 \leq s \leq n-2$ and $p=n-s$, then $\bigcap_{i \in S} M_{i}=1$ for every subset S of $\{1,2, \ldots, n\}$ with $|S| \geq s+1$.
(c) if $n=p+1$, then $G \cong\left(C_{p}\right)^{2}$.

Lemma 2.5. (See [1], Lemma 3.3). Let $G=\left(C_{p}\right)^{d}$ for $d \geq 2$ and p is a prime number. Suppose that G has C_{n}-covering $\left\{M_{i} \mid i=1, \ldots, n\right\}$. Let $T \subseteq$ $\{1,2, \ldots, n\}$.
(a) If $|T|=n-p$, then $\left|\bigcap_{i \in T} M_{i}\right|=1$ or p.
(b) If $|T|=2$, then $\left|\cap_{i \in T} M_{i}\right|=p^{d-2}$.
(c) $\bigcap_{i \in T} M_{i}=1$ for some T of size d.
(d) If $\bigcap_{i \in S} M_{i}=1$ whenever $|S|=d$, then $p \leq\left|\bigcap_{i \in T} M_{i}\right| \leq n-d+$ 1 whenever $|T|=d-1$.

3 Result

In this section we characterize p-groups with a maximal irredundant 10 covering.

Theorem 3.1. Let G be a 3-group such that $|G| \neq 3^{4}$. Then G is a $C_{10-\text { group, }}$ if and only if $G \cong\left(C_{3}\right)^{5}$.

Proof. Suppose that G is a 3-group, $G=\bigcup_{i=1}^{10} M_{i}$ and $D=\bigcap_{i=1}^{10} M_{i}$. Since the Frattini subgroups of $G, \phi(G)=G^{\prime} G^{3} \leq D$, we have D is a normal subgroup of G. Therefore $D=1$ and G is an elementary abelian 3-group.By Lemma 2.5(b)
$\left|G: M_{i}\right|=3$ and $\left|G: M_{i} \cap M_{j}\right|=3^{2}=9$ for all distinct $i, j \in[10]$
and by lemma 2.4(b) implies that

$$
\begin{equation*}
\forall S \subseteq[10] \text { with } S \geq 10-3+1=8, \bigcap_{i \in S} M_{i}=1 \tag{2}
\end{equation*}
$$

It follows that $|G| \leq 3^{8}$. Since an elementary abelian group of order 3^{2} has only four maximal subgroups, we have $|G| \geq 3^{3}$.

Let $|G|=3^{3}$, so that $G \cong\left(C_{3}\right)^{3}$. We have used the following function run in GAP [16] to proof the claim. The inputs of the function are a group and a number of covering, and the outputs are all combinations of maximal irredundant 10 -covering with core free intersection of G, and if there is no such covering for G, then the list is empty.

```
f:=function(G,p) local S,M,n,i,C,T,Q,R;
n:=Size(G);
M:=MaximalSubgroups(G);
C:=Combinations(M,p);
S:=[];
for i in [1..Size(C)] do if Size(Union(C[i]))=n then
Add(S,C[i]);
fi;od;
T:= [];
for i in [1..Size(S)] do if
Size(Core(G,Intersection(S[i])))=1 then Add(T,S[i]);
```

```
fi;od;
R:= [];
for i in [1..Size(T)] do Q:=Combinations(T[i],p-1);
if (n in List(Q,i->Size(Union(i))))=false then
Add(R,T[i]);
fi;od;
return R;
end;
```

finally, we found that the list is empty, and therefore $|G| \neq 3^{3}$. Assume that $|G|=3^{5}$, so that $G \cong\left(C_{3}\right)^{5}$. By GAP in [16], we can check that if $G=$ $\langle a, b, c, d\rangle$, then the set

$$
C=\left\{\langle a, b, c, d\rangle,\langle a, b, c, e\rangle,\langle a, b, d, e\rangle,\langle a, c, d, e\rangle,\langle b, c, d, e\rangle,\left\langle a c^{-1}, b, d, e\right\rangle,\right.
$$

$$
\left.\langle a, b, c e, d\rangle,\left\langle a^{-1} b, a^{-1} c, a^{-1} d, a^{-1} e\right\rangle,\langle a, b, c, d e\rangle,\left\langle a e, a^{-1} b, a^{-1} c, a^{-1} d\right\rangle\right\}
$$

of maximal subgroups form a C_{10}-covering for G.
Let $|G|=3^{6}$. By part (c) of Lemma 2.5, we assume that there exist $S \in$ [10] ${ }^{6}$ such that $\left|\bigcap_{i \in S} M_{i}\right|=1$. Since the covering is irredundant, therefore there exist $S \in[10]^{2}$ such that for all $T \in[10]^{6}, O=\bigcap_{i \in T} M_{i} \nsubseteq \bigcap_{i \in S} M_{i}$. Therefore,

$$
\begin{aligned}
& |G|=3^{6}=\left|G: \bigcap_{i \in 1}^{8} M_{i}\right|=\left|G: \bigcap_{|G: O|=3^{4}}^{6} M_{i}\right|\left|G: \bigcap_{i \in 1}^{2} M_{i}\right|=|G: O| 3^{2} \\
& |O|=3^{2},
\end{aligned}
$$

which is a contradiction by $\left|\bigcap_{i \in 1}^{6} M_{i}\right|=1$.
If $|G|=3^{7}$. Then Lemma 2.5 implies that $\bigcap_{i \in T} M_{i}=1$ for at least $T \in$ $[10]^{7}$. Therefore, we assume that there exist $S \in[10]^{7}$ such that $\left|\cap_{i \in S} M_{i}\right|=$ 1. Since the covering is irredundant, therefore there exist $j \in$ [10] such that for all $L \in[10]^{7}, N=\bigcap_{i \in L} M_{i} \nsubseteq M_{j}$. Therefore

$$
\begin{gathered}
|G|=3^{7}=\left|G: \bigcap_{i \in 1}^{8} M_{i}\right|=|G: N|\left|G: M_{j}\right|=|G: N| 3 \\
|G: N|=3^{6}
\end{gathered}
$$

$|N|=3$,
which is a contradiction by $\left|\cap_{i \in 1}^{7} M_{i}\right|=1$.
Now assume that $|G|=3^{8}$. Then Lemma 2.5(c) implies that

$$
\begin{equation*}
\left|\cap_{i \in T} M_{i}\right|=3 \text { for every } T \in[10]^{7} \tag{3}
\end{equation*}
$$

Then it follows from (1) that for every $\in[10]^{3}$, we have $\left|G: \bigcap_{i \in K} M_{i}\right|=3^{5}$ or 3^{6}. Now we prove that $\left|\cap_{i \in K} M_{i}\right|=3^{5}$ for all $K \in[10]^{3}$. Suppose, for contradiction, that there exist $L \in[10]^{3}$ such that $\left|\cap_{i \in L} M_{i}\right|=3^{6}$. Let $L^{\prime} \in$ [10] ${ }^{4}$ such that $L \cap L^{\prime}=\emptyset$. Then it follows from (1) and (3) that $\left|\bigcap_{i \in L U L^{\prime \prime}} M_{i}\right|=\left|\bigcap_{i \in L^{\prime} \cup L^{\prime \prime}} M_{i}\right|=3$ for every $L^{\prime \prime}$ is a proper subgroup of L of size 2 . Since $\left|L^{\prime \prime} \cup L^{\prime}\right|=6$, it follows that $|G| \leq 3^{6}$, which is a contradiction. Therefore,

$$
\begin{equation*}
\left|\bigcap_{i \in K} M_{i}\right|=3^{5} \text { for all } K \in[10]^{3} \tag{4}
\end{equation*}
$$

By (1), $\left|\cap_{i \in T} M_{i}\right| \in\left\{3^{4}\right.$ or $\left.3^{5}\right\}$ for all $T \in[10]^{4}$, we prove that $\left|\cap_{i \in T} M_{i}\right|=3^{4}$ for all $T \in[10]^{4}$. Suppose, for a contradiction that there exists $L \in[10]^{4}$ such that $\left|\cap_{i \in L} M_{i}\right|=3^{5}$. Let $L^{\prime} \in[10]^{3}$ such that $L \cap L^{\prime}=\phi$. Then (1) and (3) imply that
$\left|\bigcap_{i \in L \cup L^{\prime \prime}} M_{i}\right|=\left|\bigcap_{i \in L^{\prime} \cup L^{\prime \prime}} M_{i}\right|=3$ for every $L^{\prime \prime} \subset L$ of size 3 . Since $\mid L^{\prime \prime} \cup$ $L^{\prime} \mid=6$, it follows that $|G| \leq 3^{6}$, which is a contradiction. We conclude that,

$$
\begin{equation*}
\left|\bigcap_{i \in T} M_{i}\right|=3^{4} \text { for all } T \in[10]^{4} \tag{5}
\end{equation*}
$$

By a similar argument as in the previous, we can prove that

$$
\begin{equation*}
\forall V \in[10]^{5},\left|\bigcap_{i \in V} M_{i}\right|=3^{3} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall W \in[10]^{6},\left|\bigcap_{i \in W} M_{i}\right|=3^{2} \tag{7}
\end{equation*}
$$

Now using (1) - (7), it follows from the inclusion-exclusion principle that

$$
\begin{gathered}
\left|\bigcup_{i=1}^{10} M_{i}\right|=\binom{10}{1} 3^{7}-\binom{10}{2} 3^{6}+\binom{10}{3} 3^{5}-\binom{10}{4} 3^{4}+\binom{10}{5} 3^{3}-\binom{10}{16} 3^{2} \\
+\binom{10}{7} 3-\binom{10}{8}+\binom{10}{9}-\binom{10}{10}=6453
\end{gathered}
$$

which is not 3^{8}, a final contradiction.
Theorem 3.2. Let G be a C_{10-} group. Then G is a p-group for a prime p if and only if $G \cong\left(C_{3}\right)^{5}$ or $G \cong\left(C_{5}\right)^{3}$.

Proof. Let G be a p-group with aC_{10}-covering $\left\{M_{i} \mid i \in[10]\right\}$. Since the Frattini subgroups of $G, \phi(G)=G^{\prime} G^{p} \leq D$, we have D is a normal subgroup of G. Therefore $D=1$ and G is an elementary abelian p-group. By Lemma 2.1 implies that $p \leq 5$ and it follows from Lemma 2.2 that $p \neq 2$. Therefore $p=$ 3 or $p=5$.
If $p=5$, then by Theorem 1.2 it follows that $G \cong\left(C_{5}\right)^{3}$.If $p=3$, then Theorem 3.1 implies that $G \cong\left(C_{3}\right)^{5}$.

References

1. Abdollahi, A., Ataei, M. J., Hassanabadi, A. M.: Minimal blocking sets in PG ($n, 2$) and covering groups by subgroups. Communications in Algebra. 36(2), 365-380(2008)
2. Ataei, M. J., Sajjad, V.: Characterization of 5 -groups with a maximal Irredundant 10-cover. In International Mathematical Forum. 35(6), 17331738(2011)
3. Abdollahi, A., Ataei, M. J., Amiri, S. J., Hassanabadi, A. M.: Groups with a maximal irredundant 6-cover. Communications in Algebra. 33(9), 32253238(2005)
4. Abdollahi, A., Amiri, S. J.: On groups with an irredundant 7cover.Journal of pure and applied algebra.209(2), 291-300(2007)
5. Ataei, M. J.: C8-groups and nilpotency condition. International Journal of Algebra. 4(22), 1057-1062(2010)
6. Bryce, R. A., Fedri, V., Serena, L.: Covering groups with subgroups.Bulletin of the Australian Mathematical Society. 55(03), 469476(1997)
7. Greco, D.: Sui gruppichesonosomma di quattro o cinquesottogruppi.Rend. Accad.delleScienze di Napoli (4). 23, 4956(1956)
8. Scorza, G.: I gruppichepossonopensarsi come somma di trelorosottogruppi, Boll. Un. Mat. Ital. 5, 216-218(1926)
9. Jungnickel, D., Storme, L.: Packing and covering groups with subgroups. Journal of Algebra, 239(1), 191-214(2001)
10. Bruen, A. A., Thas, J. A.: Hyperplane coverings and blocking sets. MathematischeZeitschrift, 181(3), 407-409(1982)
11. Abdollahi, A., Ashraf, F., Shaker, S. M.:The symmetric group of degree six can be covered by 13 and no fewer proper subgroups. Bull. Malays.Math. Sci. Soc.(2). 30(1), 57-58(2007)
12. Holmes, P. E.: Subgroup coverings of some sporadic groups. Journal of Combinatorial Theory, Series A, 113(6), 1204-1213(2006)
13. Maróti, A.: Covering the symmetric groups with proper subgroups.Journal of Combinatorial Theory, Series A, 110(1), 97111(2005)
14. Garonzi, M.: Finite Groups that are the union of at most 25 proper subgroups. Journal of Algebra and its Applications, 12(04), 1350002(2013)
15. Cohn J. H. E.:On n-sum groups.Math. Scand. 75, 44-58(1994)
16. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3; 2002,http://www.gap-system.org

chus

[^0]: Rawdah Adawiyah Tarmizi (\triangle) • Hajar Sulaiman
 School of Mathematical Sciences,
 Universiti Sains Malaysia, 11800 USM Penang, Malaysia
 e-mail: rawdahadawiyah@gmail.com, hajar@cs.usm.my

