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CHAPTER 12 

New Concept of e-I-open and e-I-Continuous 

Functions 

W.F. Al-omeri, M.S. Md. Noorani, and A. AL-Omari 
 

 

Abstract. In this paper, new classes of functions are introduced and 

studied by making use of e-I-open sets and e-I-closed sets. 

Relationship between the new classes and other classes of functions 

are established besides giving examples, counter examples, 

properties and characterizations. 
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1 Introduction 
 
The  subject  of ideals in topological  spaces has been studied  by Kuratowski 

[9] and  Vaidyanathaswamy [15]. Jankovic  and  Hamlett [8] investigated 

further  prop- erties  of ideal  space.   The  importance of continuity and  

generalized  continuity is significant in various areas of mathematics and 

related  sciences. One of them, which has been in recent years of interest to 

general topologists,  is its decomposition. The decomposition  of continuity 

has been studied  by many authors. The class of e-open sets is contains  all δ-

preopen [12] sets and  δ-semiopen [11] sets.  In 1992, Jankovic and  Hamlett 

[7] introduced the  notion  of I-open  sets  in topological  spaces.   Abd El-

Monsef et  al.  [1] investigated I-open  sets  and  I-continuous functions.   In 

this paper,  using the notion  of e-I-open sets, the concepts  of somewhat  e-I-

continuous functions  and somewhat  e-I-open functions  are introduced and 

studied.  Also char- acterizations for somewhat  e-I-continuity is obtained 

besides giving examples and counterexamples.An ideal I on a topological  

space (X, I) is a nonempty collection of subsets  of X which satisfies the 

following conditions: 

A ∈ I and B ⊂ A implies B ∈ I; A ∈ I and B ∈ I implies A ∪ B ∈ I.  

Applications to various  fields were further  investigated by Jankovic  and  

Hamlett [8] Dontchev  et  al.   [4]; Mukherjee  et  al.   [10]; Arenas et al.   [3]; 

et  al.   Nasef and Mahmoud  [13], etc.  Given a topological  space (X, I) with  

an ideal I on X and  if p(X)  is the  set  of all subsets  of X,  a set  operator (.)*  

: p(X)  → p(X),  called  a-local function  [14, 8] of A with respect  to τ and I is 

defined as follows: for A ⊆ X, 

A∗(I, τ) = {x ∈ X | U ∩ A ∈  / I  for every U ∈ τ (x)} 

where  τ (x = {U ∈  τ | x ∈  U }. A Kuratowski closure operator Cl*(x)= A 

∪A*(I, τ ). When  there  is no  chance  for  confusion,  we will simply  write  

A*  forA*(I, τ ).  X*  is often a proper  subset  of X. 

 
Definition 1.1.   A subset A of an ideal topological space (X, τ, I) is said to be:  

(1)  I-open [1] if A ⊂ Int(A*). 

(2)  semi*-I-open [6] if A ⊂ Cl(δIntI (A)). 

(3)  e-I-open if [2] A ⊂ Cl(δIntI (A)) ∪  Int(δClI (A)). 

 

Definition 1.2.   [5] A  function  f : X → Y is said to be somewhat-continuous 

function  if for U ∈  σ and f −1 (U ) ≠ ∅, there  exists  an open set V in X such 

that V ≠∅ and V ⊂ f −1 (U ). 
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Definition 1.3.   [5] A  function  f : X → Y is said to be somewhat-continuous 

function  provided that  for U ∈ τ and U ≠ ∅ there exists  an open set V in X 

such that V ≠∅  and V ⊂ f −1 (U ). 

 
Definition 1.4.   A  function   f :  (X, τ, I) → (Y, σ) is  said  to  be somewhat-I- 

continuous  function  if for U ∈ σ and f −1 (U ) ≠∅ there exists  an I-open  set 

V in X such that V ≠∅ and V ⊂ f −1 (U ). 

 
Definition 1.5.   A function  f : (X, τ, I) → (Y, σ) is said to be somewhat  

semi*- I-continuous function  if for U ∈ σ and f −1 (U ) ≠∅ there exists  an 

semi*-I-open set V in X such that V ≠∅  and V ⊂ f −1 (U ). 

 
Definition 1.6.  A function  f : (X, τ, I) → (Y, σ) is said to be semi*-I-

continuous [2], if the inverse  image of each open set is semi*-I-open. 

 
Definition 1.7.   A  function  f : (X, τ, I) → (Y, σ) is said to be I-continuous 

[1], if the inverse  image of each open set is I-open. 

 
Definition 1.8.   A  function  f : (X, τ, I) → (Y, σ) is  said  to  be I-open  (resp. 

semi*-I-open)  function  if the image of each open set U in (X, τ ) is I-open  

(resp. semi*-I-open) in (Y, σ, I). 

 

Definition 1.9.   A function  f : (X, τ, I) → (Y, σ) is said to be somewhat-I-

open function  provided that  for U ∈ τ and U ≠ ∅ there exists  an open set V 

in Y such that V ≠ ∅ and V ⊂ f (U ). 

 
Definition 1.10. A function  f : (X, τ, I) → (Y, σ) is said to be somewhat  

semi*- I-open function  provided  that  for U ∈ τ and U ≠ ∅ there  exists  an 

semi*-I-open set V in Y such that V ≠ ∅ and V ⊂ f (U ) 

 

 

2 Somewhat e-I-continuous  functions 
 

Definition 2.1.  Let (X, τ, I) be ideal topological spaces and (Y, σ) be any 

topological space.  A  function  f : (X, τ, I) → (Y, σ) is said to be somewhat  e-
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I-continuous function  if for every  U ∈ σ and f −1 (U ) ≠∅  there  exists  an e-

I-open  set V in X such that V ≠ ∅ and V ⊂ f −1 (U ). 

 

Example 2.2.   Let  X = {a, b} with  a topology τ = {∅, X},  I = {∅, {a}},  Y 

={a, b},  σ = {∅, X, {a}}.  Now defined a function f : (X, τ, I) → (Y, σ) as 

follows: f (a)  = a and  f (b)  = a. Then  f is  somewhat  e-I-continuous  

function  Because Cl(δIntI (A)) ∪ Int(δClI (A))  = Cl({b}) ∪ Int(X)  = X,  if U 

= {a}, V = {b}.  Then V is e-I-open and V ⊂ f −1 (U ). 

 
Theorem 2.3.   Every  somewhat  semi*-I-continuous function   is  somewhat  

e-I- continuous  function. 

 
Proof.  Let  f : X → Y be somewhat  semi*-I-continuous  function.  Let U be 

any open set in Y such  that f −1 (U ) ≠ ∅. Since f is somewhat  semi*-I-

continuous function,   there  exists  a  semi*-I-open  set  V in  X  such  that V ≠ 

∅  and  V ⊂ f −1 (U ).   Since every  semi*-I-open  set  is e-I-open,  there  exist  

a e-I-open  set  V such that V ≠ ∅ and V ⊂ f −1 (U ), which implies that f is 

somewhat  e-I-continuous function.                                                                                                                                   

 
Remark 2.4.   Converse  of the  above theorem  need  not  be true  in  general  

which follows from  the following example. 

 

 

Example 2.5.   Let X = Y = {a, b, c} with a topology τ = {∅, X, {a}, {b, c}}, I 

= {∅, {a}}, σ = {∅, X, {a}, {c}, {a, c}}. Defined a function  f : (X, τ, I) → (Y, 

σ) as follows: f (a) = a, f (c) = c and f (b) = b. Then f is somewhat e-I-

continuous function but not somewhat semi*-I-continuous. Since the inverse 

image of {c} in (Y, σ) is {c} in (X, τ, I) which is not semi*-I-open set. 

 
Theorem 2.6.  Every somewhat I-continuous function is somewhat semi*-I-

continuous function. 

 
Theorem 2.7.  Every somewhat I-continuous function is somewhat e-I-

continuous unction. 

 
Proof.  Theorem follows from Theorem 2.3 and Theorem 2.6.                                                                       
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Remark 2.8.   Converse  of the  above theorem  need  not  be true  in  general    

which follows from  the following example. 

 
Example 2.9.   In  example  2.5,  the  function  f : X  → Y defined  by f (a)  = 

a, f (b)  = b,  f (c)  = c is  somewhat  e-I-continuous  but  not  somewhat-I-

continuous since the inverse  image of {c} is {c} which is not I-open set. 

 
Theorem 2.10. Let  f : (X, τ, I) → (Y, σ) and g : (Y, σ) → (Z, ζ) be any  two 

functions. If f is somewhat e-I-continuous function and g is continuous 

function, then g ◦ f is somewhat  e-I-continuous function. 

 

Proof.  Let  U ∈ ζ. Suppose  that g−1 (U ) ≠ ∅. Since U ∈ ζ and g is continuous 

function  g−1 (U ) ∈ ζ. Suppose  that f −1 (g−1 (U ))  ≠ ∅. Since by hypothesis  f 

is somewhat  e-I-continuous  function,  there  exists  a e-I-open  set  V in X 

such  that V ≠ ∅ and V ⊂ f −1 (g−1 (U )).  But f −1 (g−1(U )) = (g ◦ f )−1(U ), 

which implies that V ⊂ (g ◦ f )−1 (U ).  Then g ◦ f is somewhat e-I-continuous 

function.                        

 
Remark 2.11. In  the above Theorem 2.10,  if f is continuous  function  and  g 

is somewhat  e-I–continuous  function, then  it  is  not  necessarily  true  that  g 

◦ f is somewhat  e-I-continuous function. The following example serves this 

purpose. 

 
Example 2.12. Let X = Y = {a, b, c} with a topology τ = {ϕ, X, {a}, {b}, {a, 

b}, {b, c}},  I = {ϕ, {b}},  σ = {ϕ, X, {a}, {b, c}},  ζ = {ϕ, X, {a}, {c}, {a, c}} 

and  J ={ϕ, {a}}.  defined  a function  f : (X, τ ) → (Y, σ) as follows:  f (a) = a, 

f (c) = c and f (b) = b and defined a function  g : (Y, σ, J ) → (Z, ζ) as follows:  

g(a) = a, g(c) = c and g(b) = b. Then clearly f is continuous function and g is 

somewhat e-I-continuous  function  but g ◦ f is not somewhat  e-I-continuous  

function. Since (g ◦ f) −1 (U ) = (g ◦ f )−1 ({c}) = {c} which is subset of  f −1 (U 

), but not somewhat e-I-open. 

 
Definition 2.13. A subset S of an ideal topological space (X, τ, I) is called e-I-

dense if Cl*(S) = X. In other words if there is no proper e-I-closed set M in X 

such that S ⊂ M ⊂ X. 

 
Theorem 2.14. Let f : (X, τ, I) → (Y, σ) be a function. Then the following are 

equivalent: 

(1)  f is somewhat  e-I-continuous function. 

(2)  If M is a closed subset of Y such that f −1 (M ) = X,  then there is a proper 
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       e-I-closed subset D of X such that D ⊂ f −1 (M ). 
(3)  If S is a e-I-dense subset of X then f (S) is a dense subset of Y . 

 
Proof.  (1)⇒(2):  Let M be a closed subset of Y such that f −1 (M ) = X.  Then Y 

−M is an  open set  in Y such  that f −1 (Y − M ) = X − f −1 (M ) ≠ ∅.  By 

hypothesis (1) there exists a e-I-open set V in X such that V ≠ ∅ and  V ⊂ f −1 

(Y − M ) = X − f −1 (M ).  This  means  that X −  V ⊃ f −1 (M ) and  X − V = D 

is a e-I-closed set in X.  This proves (2). 

(2)⇒(3):Let S be a e-I-dense set in X.  We have to show that f (S) is dense in 

Y. Suppose not, then there exists a proper closed set M in Y such that f (S) ⊂ 

M ⊂ Y. Clearly  f −1 (M ) = X.   Hence by (2)  there  exists  a proper  e-I-closed  

set  D such that S ⊂ f −1 (M ) ⊂ D ⊂ X.  This contradicts fact that S is e-I-

dense in X. 

(3)⇒(2):  Suppose  that (2) is not  true. This  means  there  exists  a closed set 

M in Y such that f −1 (M ) = X.  But  there  is no proper  e-I-closed set D in X 

such that f −1 (M ) ⊂ D.  This means that f −1  (M ) is e-I-dense in X.  But by 

(3) f (f −1 (M )) = M must  be dense in Y , which is contradiction to the choice 

of M .  

(2)⇒(1):  Let U ∈  σ and  f −1 (U ) ≠ ∅. Then Y−U is closed and  f −1 (Y − U ) 

=X − f −1 (U ) ≠ ∅. By hypothesis  of (2)  there  exists  a proper  e-I-closed set  

D⊃ f −1 (Y − U ). This implies that X − D ⊂ f −1 (U )  and  X − D is e-I-open  

and X − D ≠ ∅.                                                                                                                          

 
Theorem  2.15. Let  (X, τ, I) be any  ideal  topological  space. Let (Y, σ) be 

any topological space.  A be an open set in X and f : (A, τ /A)  → (Y, σ) be 

somewhat e-I-continuous function  such that f (A)  is dense in Y.  Then any 

extension F of f is somewhat e-I-continuous function. 

 

Proof.  Let U be any open set in (Y, σ, J ) such that F −1 (U ) ≠ ∅.  Since f (A) 

⊂ Y is dense in Y and U ∩f (A) ≠ ∅ it follows that F −1 (U )∩A ≠ ∅.  That is f 

−1 (U )∩A ≠ ∅.  . Hence by hypothesis  on f , there  exists a e-I-open set V in 

A such that V ≠ ∅.   and V ⊂ f −1 (U ) ⊂ F −1 (U ) which implies F is 

somewhat e-I-continuous function.      

 
Theorem  2.16. Let  (X, τ, I) and  (Y, σ, J )  be any  two  ideal  topological  

spaces, X = A ∪ B where A and B are open subsets of X and f : (X, τ, I) → (Y, 
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σ, J ) be a function  such that f /A and f /B are somewhat  e-I-continuous 

function. Then f is somewhat  e-I-continuous function. 

Proof.  Let U be any open set in (Y, σ, J ) such that f −1 (U ) ≠ ∅.  Then (f /A)−1 

(U ) ≠ ∅  or (f /B)−1 (U ) ≠ ∅.  or both  (f /A)−1 (U ) ≠∅ .   and (f /B)−1 (U ) ≠ 

∅.   

Case(1) Suppose (f /A)−1 (U ) ≠ ∅.  

Since f /A is somewhat  e-I-continuous, there exists a e-I-open set V in A such 

that V ≠ ∅ and V ⊂ (f /A)−1 (U ) ⊂ f −1 (U ). Since V is e-I-open in A and A is 

open in X,  V is e-I-open in X. Thus f is somewhat  e-I-continuous function. 

Case(2) Suppose (f /B)−1 (U ) ≠ ∅. 

Since f /B is somewhat  e-I-continuous,  there  exists  a e-I-open  set  V in B 

such that V ≠ ∅. and V ⊂ (f /B)−1 (U ) ⊂ f −1 (U ).  Since V is e-I-open in B 

and B is open in X, V is e-I-open in X. Thus  f is somewhat  e-I-continuous 

function. 

Case(3) Suppose (f /A)−1 (U ) ≠ ∅.and (f /B)−1 (U ) ≠ ∅. 

This follows from both the cases (1) and (2).  Thus f is somewhat e-I-

continuous function.                                                                                                                                                                                               

 

Definition 2.17. A  topological space X is said to be e-I-separable  if there 

exists a countable subset B of X which is e-I-dense in X. 

 

Theorem  2.18. If  f : (X, τ, I) −→ (Y, σ) is somewhat  e-I-continuous  

function from  X on to Y and if X is e-I-separable, then Y is separable. 

 

Proof.  Let  f : X  → Y be somewhat  e-I-continuous  function  such  that X is 

e-I-separable. Then by definition  there  exists  a countable subset  B of X 

which is e-I-dense in X.  Then by Theorem 2.14,  f (B)  is dense in Y. Since B 

is countable f (B) is also countable which is dense in Y, which indicates that Y 

is separable.      

 

 

Acknowledgements.  
The authors would like to acknowledge the grant: UKM Grant DIP-2014-034 

and Ministry of Education, Malaysia grant FRGS/1/2014/ST06/UKM/01/1 for 

financial support. 

 



 

122 

 

References 

 

[1]  M.  E.  Abd  El-monsef, E.  F.  Lashien, and  A.  A.  Nasef.  On I-open 

sets and I- continuous functions. , pp 21-30  Kyungpook Math., 32 

(1992). 

[2]  W. Al-Omeri, M. Noorani and  A. Al-Omari, On e-I -open  sets,  e-I -

continuoues functions  and decomposition of continuity, pp 15-31. J. 

Math. Appl., 38  (2015). 

[3]  F.  G.  Arenas and  J. Dontchev, M. L. Puertas, Idealization of some  

weak  separation axioms, pp 47- 53 Acta Math. Hungar., 89 (1-2)  

(2000). 

[4]  J. Dontchev, Strong B-sets and  another decomposition of continuity, pp 

259-265 Acta Math. Hungar., 75 (1997). 

[5]  K. R. Gentry, and H. B. Hoyle, Somewhat continuous functions, pp 5-12 

Czech. Math. J l, 21 (1) (1971). 

[6]  E. Hatir, on decompositions of continuity and complete continuity in 

ideal topological spaces, pp 352-362  Eur. J. Pure. Appl. Math 6(3) 

(2013). 

[7]  T.  R.  Hamlett and  D.  S. Jankovic. Compatible extensions of ideals.  

pp 453-465  Boll.  Un.  Mat. Ital., 7 (1992). 

[8]  D.  Jankovic, T.  R.Hamlett, New  topologies from  old  via  ideals, pp 

295-310  Amer. Math.  Monthly, 97 (1990). 

[9]  K. Kuratowski, Topology, Vol.  I. NewYork: Academic Press (1966). 

[10]  M. N. Mukherjee, R.  Bishwambhar and  R.  Sen,  On  extension of 

topological spaces  in terms of ideals, pp 3167-3172, Topology and  its  

Appl., 154 (2007). 

[11]  J. H. Park, B. Y. Lee and  M. J. Son, On δ-semiopen sets  in topological 

space, pp 59-67 J. Indian Acad.Math., 19 (1)  (1997). 

[12]  S.  Raychaudhuri and  M.N.  Mukherjee, On  δ-Almost Continuity  and  

δ-Preopen Sets, pp 357-366  Bull.Inst. Math. Acad.Sin., 21 (1993). 

[13]  A.  A.  Nasef  and  R.  A.  Mahmoud, Some  applications via  fuzzy  

ideals, pp 825 – 831 Chaos, Solitons andFractals, 13 (2002). 

[14]  R.  Vaidyanathaswamy, The  localization theory in  set-topology,  pp 51-

61 Proc. Indian Acad. Sci.,  20, (1945). 

[15]  R. Vaidyanathaswamy,  Set Topology, Chelsea Publishing Company 

(1960) 



 
View publication statsView publication stats

https://www.researchgate.net/publication/324717965

	iCMS 2015 Contents.pdf
	Cover Depan
	Book Chapters Complete Print v4 new
	Cover Belakang

	iCMS 2015 Back Cover.pdf
	Cover Depan
	Book Chapters Complete Print v4 new
	Cover Belakang




