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1 Introduction 
 

Let R denote the real line and let J = [0, 2 ] be a closed and bounded 

interval in R . Let 
1( , )C J R ) denote the class of real-valued functions 

defined and continuously differentiable on J . Given a measurable space ( , 

A) and for a given measurable function
1: ( , )x C J R , consider a fourth 

order periodic boundary value problem of ordinary random differential 

equations (PBVP) 

 

"''( , ) ( , ( , ), ) . .

(0, ) (2 , ), '(0, ) '(2 , ),

''(0, ) ''(2 , ) , ''' (0, ) '''(2 , ).

x t f t x t a e t J

x x x x

x x x x

  

     

     

 

 

           

            (1.1) 

                                                                                                                                                                                   

for all   , where :f J R R  . 

 
By a random solution of the random PBVP (1.1), we  mean a measurable 

function
1: ( , )x AC J R  that satisfies the equations in (1.1), where 

1( , )AC J R is the space of continuous real-valued functions whose first 

derivative exists and is absolutely continuous on J  . 

The random PBVP (1.1) is new to the theory of periodic boundary value 

problems of ordinary differential equations. When the random parameter  is 

absent, the random PBVP (1.1) reduces to the classical PBVP of fourth order 

ordinary differential equation  and the study of classical PBVP  has been 

discussed in several papers by many authors for different aspects of the 

solutions. See for example, Lakshmikantham and Leela[5], ,Nieto [6], Yao 

[8], and the references therein. In this paper, we discuss the random PBVP 

(1.1) for existence of solution which  generalize several existence results of 

the classical PBVP proved in the above quoted papers. 

 

 

2 Auxialary Results  
 
The study of random equations and their solutions have been discussed in 

Bharucha-Reid [1] which is further applied to different types of random 

equations such as random differential and random integral equations etc. See 

Itoh  [4], Bharucha-Reid [2] and the references therein. 

In this paper, we use the following random nonlinear alternative in 

proving the main result . 
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Theorem2.1.(Dhage[3,4]) Let U be a non-empty, open and bounded subset of 

the separable Banach space E such that 0 U  and let :Q EU


    be 

a compact and continuous random operator. Further suppose that there does 

not exists an u U   such that ( )Q x x   for al l   , where >1 

and U  is the boundary of U   in E  . Then the random equation 

( )Q x x   has a random solution, i.e., there is a measurable function  

: E  such that ( ) ( ) ( )Q       for all  . 

 
A corollary to above theorem in applicable form is 

 

Corollary2.1. Let (0)rB  and (0)rB  be the open and closed balls centered at 

origin of radius r in the separable  Banach  space E  and let Q :  × (0)rB

 E  be a compact and continuous random operator. Further suppose that 

there does not exists an u E  with u = r  such that ( )Q u u   for all 

  , where  > 1. Then the random equation ( )Q x x   has a random 

solution, i.e., there is a measurable function : (0)rB  such that Q( )

 ( )= ( ) forall  .  

                                                                                                                                                                                                         

The following theorem is used in the study of nonlinear discontinuous random 

differential equations.  

 

Theorem2.2.(Carath’eodory) Let :Q E E   be a mapping such that

( , .)Q x is measurable for all x E and ( , .)Q  is continuous for all

 . Then the map ( , ) ( , )x Q x   is jointly measurable. 

The following lemma appears in Nieto [6] and is useful in the study of 

second order periodic boundary value problems of ordinary differential 

equations. 

 

Lemma2.1. For any real number m >0 and
1( , )L J R  , x  is a solution to 

the differential equation 

.  
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2"''( ) ( ) ( ) . .

(0) (2 ), '(0) '(2 ),

''(0) ''(2 ), ''(0) ''(2 ).

x t m x t t a e t Jm

x x x x

x x x x



 

 

  

 

       

          (2.1) 

         if and only if it is a solution of the integral equation 

( )x t =

2

0

( , ) ( )mG t s s ds



                                              (2.2) 

 
where  

                                                                        

 

( ) (2 )

2

( ) (2 )

2

1
( , ) , 0 2 ,

2 ( 1)

1
, 0 2

2 ( 1)

m t s m t s

m m

m s t m s t

m

G t s e e if s t
m e

e e if t s
m e













  

  

      

      

 

(2.3)

  

  

                     

 
                                                                                                                                                                                                                                                                                        

Notice that the Green’s function mG  is continuous and nonnegative on J J

and the numbers 

                       2
min ( , ) : , 0,2

( 1)

m

m m

e
G t s t s

m e




   


                                 

                             and                                       

           

   
2

2

1
max ( , ) : , 0,2

2 ( 1)

m

m m

e
G t s t s

m e




 


  

     
exist for all positive real number m . 

 
We  need the following definitions . 

 

Definition2.1.A function :f J R R  is called random Carath’edory 

if  
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        (i) the map ( , ) ( , , )t f t x   is jointly measurable for all x R , and                                       

                

        (ii) the map x ( , , )f t x  is continuous for all t J and  . 

 

Definition2.2.A function :f J R R  is called random
1L -

Carath’eodory if     

       (iii) for each real number r>0 there is a measurable and bounded function 
1: ( , )rq L J R such that         

 

 ( , , ) ( , ) . .rf t x q t a e t J      for all    and x R  with 

x r
.
   

 

3 Existence Results  
 
For a given real number m  > 0, consider the random PBVP, 

2"''( , ) ( , ) ( , ( , ), ) . .

(0, ) (2 , ), '(0, ) '(2 , ),

''(0, ) ''(2 , ), '''(0, ) '''(2 , ).

mx t m x t f t x t a e t J

x x x x

x x x x

   

     

     

  

 

 

           (3.1) 

                                       

for all  , where the function :mf J R R   is defined by  

                                
2( , , ) ( , , )mf t x f t x m x                                                                                                                                    

Note: The random PBVP (1.1) is equivalent to the random PBVP (3.1) and 

therefore, a random solution to the PBVP (3.1) is the random solution to the 

PBVP (1.1) and vice versa. 

The random PBVP (3.1) is equivalent to the random integral equation, 
2

0

( , ) ( , ) ( , ( , ) , )m mx t G t s f s x s ds



          (3.2) 

for all t J and ,where the function ( , )mG t s  is defined by (2.3). 

 
Consider the following set of assumptions as 

 

( 1A ) The function mf  is random Carath’eodory on J R  .  
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( 2A ) There exists a measurable and bounded function
2: ( , )L J R   

and a continuous and   non-decreasing function : (0, )R    such 

that ( , , ) ( , ) ( ) . .mf t x t x a e t J      for all   and x R .                                               

 

 

4 Main Existence Results  
 

Theorem 4.1. Assume that the hypotheses ( 1A )-( 2A
)
 hold. Suppose that there 

exists a real number  r > 0 such that                                                                                                                                 

         r > 1

2

2

1
( ) ( )

2 ( 1)

m

m L

e
r

m e




  




                 (4.1)                                                                                     

for all   .Then the random PBVP (1.1) has a random solution defined 

on J . 

 

Proof:  Set ( , )E C J R  and define a mapping :Q E E   by 

2

0

( ) ( ) ( , ) ( , ( , ), )m mQ x t G t s f s x s ds



     

for all t J  and  .Since the map ( , )mt G t s   is continuous on J , 

Q ( ) defines a mapping  :Q E E   . Define a closed ball 
_

(0)
rB  in 

E  centered at origin 0  of radius r , where the real number r satisfies the 

inequality (3.3). We, show that Q  satisfies all the conditions of Corollary2.1on

_

(0)
rB .

 

First, we show that Q  is a random operator on 
_

(0)
rB . Since 

( , , )mf t x  is random Caratheodory, the map ( , , )mf t x  is 

measurable in view of Theorem 2.2. Similarly, the product 

( , ) ( , ( , ), )m mG t s f s x s    of a continuous and a measurable function is 

again measurable. Further, the integral is a limit of a finite sum of measurable 

functions, therefore, the map  
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2

0

( , ) ( , ( , ), ) ( ) ( )m mG t s f s x s ds Q x t



                                                                                                                                                        

is measurable. As a result, Q  is a random operator on  × 
_

(0)
rB  into E . 

     Next, we, show that the random operator Q ( ) is continuous on
_

(0)
rB . 

Let  nx be a sequence of points in
_

(0)
rB converging to the point x  in

_

(0)
rB .Then ,it is enough to prove that lim ( ) ( ) ( ) ( )n

n
Q x t Q x t 


  for all 

t J  and . By dominated convergence theorem, we obtain,    

                                         
2

0

lim ( ) ( ) lim ( , ) ( , ( , ), )n m m n
n n

Q x t G t s f s x s ds



  
 

   

                                                              

 
2

0

lim ( , ) lim ( , ( , ), )m m n
n n

G t s f s x s ds



 
 

 
       

                                                             

 
2

0

( , ) ( , ( , ), )m mG t s f s x s ds



                                                     

= ( ) ( )Q x t    
      

for all t J and . This shows that ( )Q   is a continuous random 

operator on 
_

(0)
rB .

 

Now, we show that ( )Q  is a compact random operator on
_

(0)
rB .

 To 

finish, it is enough to prove that ( )Q  (
_

(0)
rB ) is uniformly bounded and 

equi-continuous set in E for each . Since the map ( , )t   is 

bounded and 
2 1( , ) ( , )L J R L J R ,by hypothesis ( 2A ),there is constant c 
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such that 1( )
L

c   for all  .Let  be fixed. Then for any 
_

: (0)
r

x B ,one  has 

                                                  
2

0

( ) ( ) ( , ) ( , ( , ), )m mQ x t G t s f s x s ds



   
                                                

                                             
2

0

( , ) ( , ) ( ( , ) )mG t s s x s ds



                                                        

                                               
22

2

0

1
( ( , ) ) ( )

2 ( 1)

m

m

e
s ds r

m e




  




   1K     

 for all t J ,where 1K =

2

2

1
( )

2 ( 1)

m

m

e
c r

m e









. 

This shows that ( )Q 
(

_

(0)
rB ) is a                                                                                                                                                                                                                                                                                  

uniformly bounded subset of E  for each . 

Next ,we show that ( )Q  )(
_

(0)
rB )

 is an equi-continuous set in E  .Le

_

(0)
r

x B be arbitrary. Then for any 1 2,t t J , one has 

                        1 2( ) ( ) ( ) ( )Q x t Q x t  

2

1 2

0

( , ) ( , ) ( , ( , ), )m m mG t s G t s f s x s ds



   

2

1 2

0

( , ) ( , ) ( , ) ( )m mG t s G t s s r ds



                                                                                                                                            

                                                            
2 21 1

2 2
2 2

1 2

0 0

( ( , ) ( , ) ) ( ( , ) ) ( )m mG t s G t s ds s ds r

 

    
.

 

Hence for all 1 2,t t J
,
 1 2( ) ( ) ( ) ( )Q x t Q x t  0  as  1 2t t ,  

uniformly for all
_

(0)
r

x B
.Therefore,

 ( )Q 
(

_

(0)
rB ) is an equi-
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continuous set in E . As ( )Q 
(

_

(0)
rB ) is uniformly bounded and equi-

continuous, it is compact by Arzel -Ascoli theorem for each . 

Consequently, ( )Q  is a completely continuous random operator on 
_

(0)
rB .                                                                                                                                     

Finally, we prove that there does not exist an u E with u r  such 

that ( ) ( ) ( , )Q u t u t    for all t J  and  , where  > 1. 

Suppose not. Then there exists an element u E  satisfying 

( ) ( ) ( , )Q u t u t   for some  .Let
1




 .Then 1  and  

 ( ) ( ) ( , )Q u t u t   for some  .Now for this  ,one has       

                                    u t, ( )u tQ    

                                                        
2

0

( , ) ( , ( , ), )m mG t s f s u s ds



                                                                                                                                                                                               

                                        

22

2

0

1
( , ) ( ( ) )

2 ( 1)

m

m

e
s u ds

m e




   




                                                                                                                                        

                      
1

2

2

1
( ) ( ( ) )

2 ( 1)

m

m L

e
u

m e




   





 

                                                                                                                                               

for all t J . Taking supremum over t  in the above inequality yields, 

                                                

1

2

2

1
( ) ( ) ( ( ) )

2 ( 1)

m

m L

e
u u

m e




    




  
                                or                                                                                                         

                        

1

2

2

1
( ) ( )

2 ( 1)

m

m L

e
r r

m e




  





 

for some  . This contradicts to the condition (3.3). 

Thus, all the conditions of Corollary 2.1 are satisfied. Hence the random 

equation ( ) ( ) ( , )Q x t x t  has a random solution in
_

(0)
rB ), i.e., there is 

a measurable function
_

: (0)
rB    such that ( ) ( ) ( , )Q t t     for 

all t J  and  . As a result, the random PBVP (1.1) has a random 

solution defined on J . This completes the proof .      
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