Quest for Research Excellence On Computing, Mathematics and Statistics

Editors
Kor Liew Kee
Kamarul Arififin Mansor Asmahani Nayan Shahida Farhan Zakaria

Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics (iCMS2015)

Editors:

Kor Liew Lee
Kamarul Ariffin Mansor
Asmahani Nayan
Shahida Farhan Zakaria
Zanariah Idrus

Quest for Research Excellence on Computing, Mathematics and Statistics

Chapters in Book

The $2^{\text {nd }}$ International Conference on Computing, Mathematics and Statistics
(iCMS2015)
4-5 November 2015
Langkawi Lagoon Resort
Langkawi Island, Kedah
Malaysia

Copyright © 2015 Universiti Teknologi MARA Cawangan Kedah

All rights reserved, except for educational purposes with no commercial interests. No part of this publication may be reproduced, copied, stored in any retrieval system or transmitted in any form or any means, electronic or mechanical including photocopying, recording or otherwise, without prior permission from the Rector, Universiti Teknologi MARA Cawangan Kedah, Kampus Merbok, 08400 Merbok, Kedah, Malaysia.

The views and opinions and technical recommendations expressed by the contributors are entirely their own and do not necessarily reflect the views of the editors, the Faculty or the University.

Publication by
Faculty of Computer \& Mathematical Sciences
UiTM Kedah

Content

International Scientific Committee
Preface
CHAPTER 1 1
Towards Ameliorating the Problem of Packet Dropping in IDS using P System Model on GPU
Rufai Kazeem Idowu, Ravie Chandren M., and Zulaiha Ali Othman
CHAPTER 2 11
Analyses of Software Testing Problems in Small and Medium Software Enterprises (SME's) and a Proposed Framework on Exploratory Testing
Murugan Thangiah and Shuib Basri
CHAPTER 3 25
Senior Citizen and Online Form: Hybrid Guideline Form Design
Zanariah Idrus, Nor Hafizah Abdul Razak, and Noor Hasnita Abdul Talib
CHAPTER 4 35
Research Paradigms in Computing Disciplines: A Review
Nor Hafizah Abdul Razak, Noor Hasnita Abdul Talib, and Jasmin Ilyani Ahmad
CHAPTER 5 41
Dijkstra's Algorithm In Product Searching System (Prosearch)
Nur Hasni Nasrudin, Siti Hajar Nasaruddin, Syarifah Syafiqah Wafa Syed Abdul Halim and Rosida Ahmad Junid
CHAPTER 6 49
Developing Waqf Land Computing: A Preliminary Study On The Used Of Web-based Applications And Spatial Database
Siti Nurbaya Ismail, Zanariah Idrus, Nor Hafizah Abdul Razak
CHAPTER 7 59
Implementation Of CORDIC Algorithm In Vectoring Mode
Anis Shahida Mokhtar, Abdullah bin Mohd Fadzullah
CHAPTER 8 71
A Description of Projective Contractions in the Orlicz- Kantorovich Lattice
Inomjon Ganiev and M. Azram
CHAPTER 9 83
The Geometry of the Accessible Sets of Vector Fields
A.Y.Narmanov, and I. Ganiev
CHAPTER 10 89
Existence Result of Third Order Functional Random Integro- Differential Inclusion
D. S. Palimkar
CHAPTER 11 105
Fourth Order Random Differential EquationD. S. Palimkar and P.R. Shinde
CHAPTER 12 115
New Concept of $e-I$-open and $e-I$-Continuous Functions
W.F. Al-omeri, M.S. Md. Noorani, and A. AL-Omari
CHAPTER 13 123
Visualization of Constrained Data by Rational Cubic Ball Function
Wan Zafira Ezza Wan Zakaria, and JamaludinMd Ali
CHAPTER 14 133
Octupole Vibrations in Even-Even Isotopes of DyA.A. Okhunov, G.I. Turaeva, and M. Jahangir Alam
CHAPTER 15 141
Characterization of p-Groups with a Maximal Irredundant 10- Covering
Rawdah Adawiyah Tarmizi and Hajar Sulaiman
CHAPTER 16 149
Sensitivity Index of HIV-1 model Parameters with Vertical transmission
Amiru Sule, Mamman Mamuda, Abdullahi Mohammed Baba, Jibril Lawal, and I.G. Usman
CHAPTER 17 163
Derivation of Four-Point Explicit Block Methods for Direct Solution of Initial Value Problems of Third Order Ordinary Differential Equations
Z. Omar, J. O. Kuboye, and Y.A. Abdullah
CHAPTER 18 175
Absolute Translativity of Generalized Nörlund Mean
Amjed Zraiqat
CHAPTER 19 189
Type I Error of the Modified Wilcoxon Signed Rank Test under Leptokurtic Distribution
Nor Aishah Ahad, Sharipah Soaad Syed Yahaya, Suhaida Abdullah, Lim Yai Fung and Zahayu Md Yusof
CHAPTER 20 199
The Combined EWMA-CUSUM Control Chart with Autocorrelation
Abbas Umar Farouk, and Ismail Bin Mohamad
CHAPTER 21 213
Estimating Philippine Dealing System Treasury (PDST)
Reference Rate Yield Curves using a State-Space Representation of the Nelson-Siegel Model
Len Patrick Dominic M. Garces, and Ma. Eleanor R. Reserva
CHAPTER 22 225
A Structural Equation Model Analyzing the Relationship Model on Perception Students toward Mathematics
Siti Fairus Mokhtar
CHAPTER 23 233
Partial Least Squares Based Financial Distressed Classifying Model of Small Construction Firms
Amirah-Hazwani Abdul Rahim, Ida-Normaya M. Nasir, Abd-Razak Ahmad, and Nurazlina Abdul Rashid
CHAPTER 24 245
Logit Bankruptcy Model of Industrial Product Firms
Asmahani Nayan, Siti-Shuhada Ishak, and Abd-Razak Ahmad
CHAPTER 25 255
Data Mining in Predicting Firms Failure: A Comparative Study Using Artificial Neural Networks and Classification and Regression Tree
Norashikin Nasaruddin, Wan-Siti-Esah Che-Hussain, Asmahani Nayan, and Abd-Razak Ahmad
CHAPTER 26 265
Risks of Divorce: Comparison between Cox and Parametric Models
Sanizah Ahmad, Norin Rahayu Shamsuddin, Nur Niswah Naslina Azid @ Maarof, and Hasfariza Farizad
CHAPTER 27 277
Reliability and Construct Validity of DASS 21 using Malay
Version: A Pilot Study
Kartini Kasim, Norin Rahayu Shamsuddin, Wan Zulkipli Wan Salleh, Kardina Kamaruddin, and Norazan Mohamed Ramli
CHAPTER 28 285
Outlier Detection in Time Series Model
Nurul Sima Mohamad Shariff, Nor Aishah Hamzah, and Karmila Hanim Kamil
CHAPTER 29 297
ROAD Algorithm for Control Charts
Gejza Dohnal
CHAPTER 30 311
Learning Numerals for Down Syndrome by applying Cognitive Principles in 3D Walkthrough
Nor Intan Shafini Nasaruddin, Khairul Nurmazianna Ismail, and Aleena Puspita A.Halim
CHAPTER 31 329
Predicting Currency Crisis: An Analysis on Early Warning System from Different Perspective
Nor Azuana Ramli
CHAPTER 32 341
Using Analytic Hierarchy Process to Rank Takaful Companies based on Health Takaful Product
Noor Hafizah Zainal Aznam, Shahida Farhan Zakaria, and Wan Asma 'a Wan Abu Bakar
CHAPTER 33 349
Service Discovery Mechanism for Service Continuity in Heterogeneous Network
Shaifizat Mansor, Nor Shahniza Kamal Basha, Siti Rafidah Muhamat Dawam, Noor Rasidah Ali, and Shamsul Jamel Elias
CHAPTER 34 361
Ranking Islamic Corporate Social Responsibility Activities under Product Development Theme using Analytic Hierarchy Process
Shahida Farhan Zakaria, Wan-Asma ' Wan-Abu-Bakar, Roshima Said, Sharifah Nazura Syed-Noh, and Abd-Razak Ahmad
CHAPTER 35 369
A Fuzzy Rule Base System For Mango Ripeness Classification
Ab Razak Mansor, Mahmod Othman, Noor Rasidah Ali , Khairul Adilah Ahmad, and Samsul Jamel Elias
CHAPTER 36 381
Technology Assistance for Kids with Learning Disabilities:
Challenges and OpportunitiesSuhailah Mohd Yusof, Noor Hasnita Abdul Talib, and Jasmin IlyaniAhmad

CHAPTER 11
 Fourth Order Random Differential Equation

D. S. Palimkar and P.R. Shinde

Abstract

In this paper, an existence of random solution is proved for a periodic boundary value problem of fourth order random differential equation through an algebraic random fixed point theorem of Dhage.

Keywords: Random differential equation, periodic boundary value problem, random solution, caratheodory condition.

[^0]
1 Introduction

Let R denote the real line and let $\mathrm{J}=[0,2 \pi]$ be a closed and bounded interval in R. Let $C^{1}(J, R)$) denote the class of real-valued functions defined and continuously differentiable on J. Given a measurable space (Ω, A) and for a given measurable function $x: \Omega \rightarrow C^{1}(J, R)$, consider a fourth order periodic boundary value problem of ordinary random differential equations (PBVP)
$x " "(t, \omega)=f(t, x(t, \omega), \omega) \quad$ a.e. $t \in J$
$x(0, \omega)=x(2 \pi, \omega), x^{\prime}(0, \omega)=x^{\prime}(2 \pi, \omega)$,
$x "(0, \omega)=x "(2 \pi, \omega), x " '(0, \omega)=x "(2 \pi, \omega)$.
for all $\omega \in \Omega$, where $f: J \times R \times \Omega \rightarrow R$.

By a random solution of the random PBVP (1.1), we mean a measurable function $x: \Omega \rightarrow A C^{1}(J, R)$ that satisfies the equations in (1.1), where $A C^{1}(J, R)$ is the space of continuous real-valued functions whose first derivative exists and is absolutely continuous on J.

The random PBVP (1.1) is new to the theory of periodic boundary value problems of ordinary differential equations. When the random parameter ω is absent, the random PBVP (1.1) reduces to the classical PBVP of fourth order ordinary differential equation and the study of classical PBVP has been discussed in several papers by many authors for different aspects of the solutions. See for example, Lakshmikantham and Leela[5], ,Nieto [6], Yao [8], and the references therein. In this paper, we discuss the random PBVP (1.1) for existence of solution which generalize several existence results of the classical PBVP proved in the above quoted papers.

2 Auxialary Results

The study of random equations and their solutions have been discussed in Bharucha-Reid [1] which is further applied to different types of random equations such as random differential and random integral equations etc. See Itoh [4], Bharucha-Reid [2] and the references therein.

In this paper, we use the following random nonlinear alternative in proving the main result .

Theorem2.1.(Dhage[3,4]) Let U be a non-empty, open and bounded subset of the separable Banach space E such that $0 \in U$ and let $Q: \Omega \times \bar{U} \rightarrow E$ be a compact and continuous random operator. Further suppose that there does not exists an $u \in \partial U$ such that $Q(\omega) x=\alpha x$ for al $1 \omega \in \Omega$, where $\alpha>1$ and ∂U is the boundary of U in E. Then the random equation $Q(\omega) x=x$ has a random solution, i.e., there is a measurable function $\xi: \Omega \rightarrow E$ such that $Q(\omega) \xi(\omega)=\xi(\omega)$ for all $\omega \in \Omega$.

A corollary to above theorem in applicable form is
Corollary2.1. Let $B_{r}(0)$ and $\overline{B_{r}}(0)$ be the open and closed balls centered at origin of radius r in the separable Banach space E and let $Q: \Omega \times \overline{B_{r}}(0)$ $\rightarrow E$ be a compact and continuous random operator. Further suppose that there does not exists an $u \in E$ with $\|u\|=r$ such that $Q(\omega) u=\alpha u$ for all $\omega \in \Omega$, where $\alpha>1$. Then the random equation $Q(\omega) x=x$ has a random solution, i.e., there is a measurable function $\xi: \Omega \rightarrow \overline{B_{r}}(0)$ such that $\mathrm{Q}(\omega)$ $\xi(\omega)=\xi(\omega)$ forall $\omega \in \Omega$.

The following theorem is used in the study of nonlinear discontinuous random differential equations.

Theorem2.2.(Carath'eodory) Let $Q: \Omega \times E \rightarrow E$ be a mapping such that $Q(x,$.$) is measurable for all x \in E$ and $Q(\omega,$.$) is continuous for all \omega$ $\in \Omega$. Then the map $(\omega, x) \rightarrow Q(\omega, x)$ is jointly measurable.

The following lemma appears in Nieto [6] and is useful in the study of second order periodic boundary value problems of ordinary differential equations.

Lemma2.1. For any real number $m>0$ and $\sigma \in L^{1}(J, R), x$ is a solution to the differential equation

$$
\begin{gather*}
x " "(t)+m^{2} x(t)=\sigma(t) \quad \text { a.e. } t \in J m \\
x(0)=x(2 \pi), x^{\prime}(0)=x^{\prime}(2 \pi) \tag{2.1}\\
x "(0)=x^{\prime \prime}(2 \pi), x "(0)=x^{\prime \prime}(2 \pi) .
\end{gather*}
$$

if and only if it is a solution of the integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{2 \pi} G_{m}(t, s) \sigma(s) d s \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{m}(t, s) & =\frac{1}{2 m\left(e^{2 m \pi}-1\right)}\left[e^{m(t-s)}+e^{m(2 \pi-t+s)}\right], \quad \text { if } 0 \leq s \leq t \leq 2 \pi \\
& =\frac{1}{2 m\left(e^{2 m \pi}-1\right)}\left[e^{m(s-t)}+e^{m(2 \pi-s+t)}\right], \quad \text { if } 0 \leq t<s \leq 2 \pi
\end{aligned}
$$

Notice that the Green's function G_{m} is continuous and nonnegative on $J \times J$ and the numbers

$$
\begin{gathered}
\alpha=\min \left\{\left|G_{m}(t, s)\right|: t, s \in[0,2 \pi]\right\}=\frac{e^{m \pi}}{m\left(e^{2 m \pi}-1\right)} \\
\text { and } \\
\beta=\max \left\{\left|G_{m}(t, s)\right|: t, s \in[0,2 \pi]\right\}=\frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}
\end{gathered}
$$

exist for all positive real number m.

We need the following definitions .

Definition2.1.A function $f: J \times R \times \Omega \rightarrow R$ is called random Carath'edory if
(i) the map $(t, \omega) \rightarrow f(t, x, \omega)$ is jointly measurable for all $x \in R$, and (ii) the map $x \rightarrow f(t, x, \omega)$ is continuous for all $t \in J$ and $\omega \in \Omega$.

Definition2.2.A function $f: J \times R \times \Omega \rightarrow R$ is called random L^{1} Carath'eodory if
(iii) for each real number $\mathrm{r}>0$ there is a measurable and bounded function $q_{r}: \Omega \rightarrow L^{1}(J, R)$ such that

$$
\begin{aligned}
& |f(t, x, \omega)| \leq q_{r}(t, \omega) \quad \text { a.e. } t \in J \quad \text { for all } \omega \in \Omega \text { and } x \in R \text { with } \\
& |x| \leq r
\end{aligned}
$$

3 Existence Results

For a given real number $m>0$, consider the random PBVP,

$$
\begin{gather*}
x " "(t, \omega)+m^{2} x(t, \omega)=f_{m}(t, x(t, \omega), \omega) \text { a. e.t } \in J \\
x(0, \omega)=x(2 \pi, \omega), x^{\prime}(0, \omega)=x^{\prime}(2 \pi, \omega), \tag{3.1}\\
x "(0, \omega)=x "(2 \pi, \omega), x "(0, \omega)=x "(2 \pi, \omega) .
\end{gather*}
$$

for all $\omega \in \Omega$, where the function $f_{m}: J \times R \times \Omega \rightarrow R$ is defined by

$$
f_{m}(t, x, \omega)=f(t, x, \omega)+m^{2} x
$$

Note: The random PBVP (1.1) is equivalent to the random PBVP (3.1) and therefore, a random solution to the PBVP (3.1) is the random solution to the PBVP (1.1) and vice versa.
The random PBVP (3.1) is equivalent to the random integral equation,

$$
\begin{equation*}
x(t, \omega)=\int_{0}^{2 \pi} G_{m}(t, s) f_{m}(s, x(s, \omega), \omega) d s \tag{3.2}
\end{equation*}
$$

for all $t \in J$ and $\omega \in \Omega$, where the function $G_{m}(t, s)$ is defined by (2.3).

Consider the following set of assumptions as
(A_{1}) The function f_{m} is random Carath'eodory on $J \times R \times \Omega$.
$\left(A_{2}\right)$ There exists a measurable and bounded function $\gamma: \Omega \rightarrow L^{2}(J, R)$ and a continuous and non-decreasing function $\psi: R_{+} \rightarrow(0, \infty)$ such that $\left|f_{m}(t, x, \omega)\right| \leq \gamma(t, \omega) \psi(|x|) \quad$ a.e. $t \in J$ for all $\omega \in \Omega$ and $x \in R$.

4 Main Existence Results

Theorem 4.1. Assume that the hypotheses $\left(A_{1}\right)-\left(A_{2}\right)$ hold. Suppose that there exists a real number $r>0$ such that

$$
\begin{equation*}
r>\frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}\|\gamma(\omega)\|_{L^{L}} \psi(r) \tag{4.1}
\end{equation*}
$$

for all $\omega \in \Omega$. Then the random PBVP (1.1) has a random solution defined on J.

Proof: Set $E=C(J, R)$ and define a mapping $Q: \Omega \times E \rightarrow E$ by
$Q(\omega) x(t)=\int_{0}^{2 \pi} G_{m}(t, s) f_{m}(s, x(s, \omega), \omega) d s$
for all $t \in J$ and $\omega \in \Omega$. Since the map $t \rightarrow G_{m}(t, s)$ is continuous on J, $Q(\omega)$ defines a mapping $Q: \Omega \times E \rightarrow E$. Define a closed ball $\overline{\boldsymbol{B}}_{r}(\mathrm{O})$ in E centered at origin 0 of radius r, where the real number r satisfies the inequality (3.3). We, show that Q satisfies all the conditions of Corollary2.1on $\overline{\boldsymbol{B}}_{r}(0)$

First, we show that Q is a random operator on $\overline{\boldsymbol{B}}_{r}(0)$. Since $f_{m}(t, x, \omega)$ is random Caratheodory, the $\operatorname{map} \omega \rightarrow f_{m}(t, x, \omega)$ is measurable in view of Theorem 2.2. Similarly, the product $G_{m}(t, s) f_{m}(s, x(s, \omega), \omega)$ of a continuous and a measurable function is again measurable. Further, the integral is a limit of a finite sum of measurable functions, therefore, the map
$\omega \rightarrow \int_{0}^{2 \pi} G_{m}(t, s) f_{m}(s, x(s, \omega), \omega) d s=Q(\omega) x(t)$
is measurable. As a result, Q is a random operator on $\Omega \times \overline{\boldsymbol{B}}_{r}(0)$ into E.
Next, we, show that the random operator $Q(\omega)$ is continuous on $\overline{\boldsymbol{B}}_{r}(0)$. Let $\left\{x_{n}\right\}$ be a sequence of points in $\overline{\boldsymbol{B}}_{r}(0)$ converging to the point x in $\overline{\boldsymbol{B}}_{r}(0)$.Then ,it is enough to prove that $\lim _{n \rightarrow \infty} Q(\omega) x_{n}(t)=Q(\omega) x(t)$ for all $t \in J$ and $\omega \in \Omega$. By dominated convergence theorem, we obtain,
$\lim _{n \rightarrow \infty} Q(\omega) x_{n}(t)=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} G_{m}(t, s) f_{m}\left(s, x_{n}(s, \omega), \omega\right) d s$
$=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} G_{m}(t, s) \lim _{n \rightarrow \infty}\left[f_{m}\left(s, x_{n}(s, \omega), \omega\right)\right] d s$
$=\int_{0}^{2 \pi} G_{m}(t, s)\left[f_{m}(s, x(s, \omega), \omega)\right] d s$
$=Q(\omega) x(t)$
for all $t \in J$ and $\omega \in \Omega$. This shows that $Q(\omega)$ is a continuous random operator on $\overline{\boldsymbol{B}}_{r}(0)$.

Now, we show that $Q(\omega)$ is a compact random operator on $\overline{\boldsymbol{B}}_{r}(0)$. To finish, it is enough to prove that $Q(\omega)\left(\overline{\boldsymbol{B}}_{r}(\mathrm{O})\right)$ is uniformly bounded and equi-continuous set in E for each $\omega \in \Omega$. Since the map $\omega \rightarrow \gamma(t, \omega)$ is bounded and $L^{2}(J, R) \subset L^{1}(J, R)$, by hypothesis $\left(A_{2}\right)$, there is constant c
such that $\|\gamma(\omega)\|_{L^{L}} \leq c$ for all $\omega \in \Omega$.Let $\omega \in \Omega$ be fixed. Then for any $x: \Omega \rightarrow \overline{\boldsymbol{B}}_{r}(0)$, one has
$|Q(\omega) x(t)| \leq \int_{0}^{2 \pi} G_{m}(t, s)\left|f_{m}(s, x(s, \omega), \omega)\right| d s$
$\leq \int_{0}^{2 \pi} G_{m}(t, s) \gamma(s, \omega) \psi(|x(s, \omega)|) d s$
$\leq \frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}\left(\int_{0}^{2 \pi} \gamma(s, \omega) d s\right) \psi(r) \leq K_{1}$
for all $t \in J$, where $K_{1}=\frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)} c \psi(r)$.
This shows that $Q(\omega)\left(\overline{\boldsymbol{B}}_{r}(0)\right)$ is a
uniformly bounded subset of E for each $\omega \in \Omega$.
Next, we show that $Q(\omega))\left(\overline{\boldsymbol{B}}_{r}(0)\right.$) is an equi-continuous set in E.Le $x \in \overline{\boldsymbol{B}}_{r}(0)$ be arbitrary. Then for any $t_{1}, t_{2} \in J$, one has

$$
\left|Q(\omega) x\left(t_{1}\right)-Q(\omega) x\left(t_{2}\right)\right| \leq
$$

$\int_{0}^{2 \pi}\left|G_{m}\left(t_{1}, s\right)-G_{m}\left(t_{2}, s\right)\right|\left|f_{m}(s, x(s, \omega), \omega)\right| d s$

$$
\begin{array}{r}
\leq \int_{0}^{2 \pi}\left|G_{m}\left(t_{1}, s\right)-G_{m}\left(t_{2}, s\right)\right| \gamma(s, \omega) \psi(r) d s \\
\leq \int_{0}^{2 \pi}\left(\left|G_{m}\left(t_{1}, s\right)-G_{m}\left(t_{2}, s\right)\right|^{2} d s\right)^{\frac{1}{2}}\left(\int_{0}^{2 \pi}|\gamma(s, \omega)|^{2} d s\right)^{\frac{1}{2}} \psi(r)
\end{array}
$$

Hence for all $t_{1}, t_{2} \in J,\left|Q(\omega) x\left(t_{1}\right)-Q(\omega) x\left(t_{2}\right)\right| \rightarrow 0 \quad$ as $\quad t_{1} \rightarrow t_{2}$, uniformly for all $x \in \overline{\boldsymbol{B}}_{r}(0)$.Therefore, $\quad Q(\omega)_{\left(\overline{\boldsymbol{B}}_{r}(0)\right)}$ is an equi-
continuous set in E. As $Q(\omega){ }_{\left(\overline{\boldsymbol{B}}_{r}\right)}(0)$) is uniformly bounded and equicontinuous, it is compact by Arzel -Ascoli theorem for each $\omega \in \Omega$. Consequently, $Q(\omega)$ is a completely continuous random operator on $\overline{\boldsymbol{B}}_{r}(0)$. Finally, we prove that there does not exist an $u \in E$ with $\|u\|=r$ such that $Q(\omega) u(t)=\alpha u(t, \omega)$ for all $t \in J$ and $\omega \in \Omega$, where $\alpha>1$. Suppose not. Then there exists an element $u \in E$ satisfying $Q(\omega) u(t)=\alpha u(t, \omega)$ for some $\omega \in \Omega$.Let $\lambda=\frac{1}{\alpha}$.Then $\lambda<1$ and $\lambda Q(\omega) u(t)=u(t, \omega)$ for some $\omega \in \Omega$. Now for this $\omega \in \Omega$, one has

$$
\begin{aligned}
|\mathrm{u}(\mathrm{t}, \omega)| \leq & \lambda|Q(\omega) \mathrm{u}(\mathrm{t})| \\
& \leq \int_{0}^{2 \pi} G_{m}(t, s)\left|f_{m}(s, u(s, \omega), \omega)\right| d s \\
\leq & \frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)} \int_{0}^{2 \pi} \gamma(s, \omega) \psi(\|u(\omega)\|) d s \\
\leq & \frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}\|\gamma(\omega)\|_{L^{\prime}} \psi(\|u(\omega)\|)
\end{aligned}
$$

for all $t \in J$. Taking supremum over t in the above inequality yields,

$$
\|u(\omega)\| \leq \frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}\|\gamma(\omega)\|_{L^{\prime}} \psi(\|u(\omega)\|)
$$

or
$r \leq \frac{e^{2 m \pi}+1}{2 m\left(e^{2 m \pi}-1\right)}\|\gamma(\omega)\|_{L^{\prime}} \psi(r)$
for some $\omega \in \Omega$. This contradicts to the condition (3.3).
Thus, all the conditions of Corollary 2.1 are satisfied. Hence the random equation $Q(\omega) x(t)=x(t, \omega)$ has a random solution in $\left.\overline{\boldsymbol{B}}_{r}(0)\right)$, i.e., there is a measurable function $\xi: \Omega \rightarrow \overline{\boldsymbol{B}}_{r}(\mathrm{O})$ such that $Q(\omega) \xi(t)=\xi(t, \omega)$ for all $t \in J$ and $\omega \in \Omega$. As a result, the random PBVP (1.1) has a random solution defined on J. This completes the proof.

References

1. T. Bharucha-Reid: On the theory of random equations, Proc.Symp.Appl.16 ${ }^{\text {th. }}$ (1963),40-69,Ame.Soc., Providence, Rhode Island(1964)
2. B. C. Dhage: Some algebraic and topological random fixed point theorems with applications to nonlinear random integral equations, Tamkang J. Math. 5, 321-345(2004)
3. B. C. Dhage: A random version of a Schaefer type fixed point theorem with applications to functional random integral equations, Nonlinear Funct. Anal. Appl. 9,389-403(2004)
4. S. Itoh: Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 ,261273(1979)
5. V. Lakshmikantham and S. Leela: Remarks on first and second order periodic boundary value problem, Nonlinear Anal. 8 ,281-287(1984)
6. J. J. Nieto: Nonlinear second order periodic value problems with Carath'eodory functions, Appl. Anal.34,111-128(1989)
7. D. S. Palimkar: Existence theory of random differential equation, Inter. Journ. Of sci. and Res. Pub.,Vol.2, 7, 1-6(2012)
8. Q. Yao: Positive solutions of nonlinear second-order periodic boundary value problems, Appl. Math. Lett. 20, 583-590(2007)

chus

[^0]: D. S. Palimkar (\boxtimes)

 Department of Mathematics, Vasantrao Naik College, Nanded
 PIN-431603 (M.S.) INDIA. e-mail: dspalimkar@rediffmail.com

