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1 Description of the Problem 
 

Let ( , , ) A  be a complete  -finite measure space. Let r be the real line 

and let J = [0, T] be a closed and bounded interval in R . Consider the 

functional random integro-differential inclusion (in short FRIGDI), 

    
( )

0

0 1 2

'''( , ) , ( ), , , , ( ), , ,  . . 

(0, ) ( ), '(0, ) ( ), ''(0, ) ( )

t

x t F t x t k s x d a e t J

x q x q x q



         

     

 
     

  


   



(1.1)  

for all   where 
0 1 2: , : , :q R q R q R   , 

: (R)pF J R R  P , and functions , , : J J     are 

continuous. 

 

By a random solution of the FRIGDI (1.1) on J   we mean a 

measurable function : ( ,R)x AC J satisfying for each ,  

'''( , ) ( , )x t v t   for some measurable 1
: ( ,R)v L J  such that 

    
( )

0

( , ) , ( ), , , , ( ), , ,   . .  ,

t

v t F t x t k s x d a e t J



         
 

   
 



 

where ( ,R)AC J is the space of absolutely continuous real-valued functions 

on J. 

The FRIGDI (1.1) seems to be new and includes several known random 

differential inclusions already studied in the literature as special cases has 

been discussed in the literature for various aspects of the solutions. See 

Papapgeorgiou [5,6] and the reference therein. In this paper  we prove the 

existence result for FIGDI (1.1) under non-convex case of multi-valued 

function involved in it. 
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2 Auxiliary Results  
 

Let : (R)pF J R R  P  be a multi-valued mapping. Then for 

any measurable function : ( ,R),x C J  let 

 ( )( ) , ( ,R)FS x v M J


  

v M

 

    
( )

0

( , ) , ( ), , , , ( ), , ,   . .  .  (2.1)

t

v t F t x t k t s x t a e t J



      
  

    
  



and  1 1
( )( ) , ( ,R)FS x v L J


  


M  

    
( )

0

( , ) , ( ), , , , ( ), , ,   . .  .  (2.2)

t

v t F t x t k t s x t a e t J



      
  

    
  



This is our set of selection functions for F on J R R   . When there 

is no confusion, we denote 
1 1

( )( ) ( )( ),F FS x S y   where 

 ( , ) ( ),y t x t    for some continuous function : .J J   The 

integral of the random multi-valued function F is defined as 

    
( )

0 0

1

0

, ( ), , , , ( ), , ,

( , ) : ( )( ) .

st

t

F

F s x s k s x d ds

v s ds v S x



        

 

 
  
 

  
  
  

 



 

Further, if the integral,  

    
( )

0 0

, ( ), , , , ( ), , ,

st

F s x s k s x d ds



        
 
  
 

    
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exists for every measurable function : ( ,R),x C J then we say the 

multi-valued mapping F is Lebesgue integrable on J. 

We need the following definition. 

 

Definition 2.1. A multi-valued mapping : (R)cpJ R R   P   

is called strong random Caratheodory if for each   , 

 

(i)  ( , ) ( , , , )t t x y     is jointly measurable for all ,x y R , and 

(ii) ( , ) ( , , , )x y t x y   is Hausdorff continuous almost everywhere 

for t J . 

Again, a random Caratheodory multi-valued function   is called strong 
1

L -

Caratheodory if 

 

(iii) for each real number r > 0 there exists a measurable function 

1
: ( ,R)rh L J such that for each  , 

 ( , , , ) sup | |: ( , , , ) ( , )rt x y u u F t x y h t     
P

     

a.e.   t J  

for all 
,x y R

with | |   x r  and 
| |   y r

.  

 

Then we have the following lemmas, which are well-known in the literature. 

 

Lemma 2.1.(Caratheodory theorem [5]) Let E be a Banach space. If 

: ( )cpJ E E  P  is strong Caratheodory, then the multi-valued 

mapping  ( , ) , ( )t x F t x t  is jointly measurable for any measurable 

function x on J. 

 

3 Existence Results  
 

We will seek the random solutions of FRIGDI (1.1) in the function space

( ,R)C J  of continuous real-valued functions defined on J. Define a norm 

|| ||  in ( ,R)C J  by 
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                                     || || sup ( )
t J

x x t


 .         

                                   (3.1) 

Clearly, ( ,R)C J becomes a separable Banach space with respect to the 

above supremum norm. 

 

Definition 3.1. A multi-valued random operator : ( )clQ X X P  

is called right monotone increasing if for each   we have that 

( )( ) ( )( )
i

Q QS x S y   for all ,x y X  for which .x y  

 

We quote the following fixed-point theorem for right monotone increasing 

random multi-valued mappings on ordered Banach spaces. 

 

Theorem 3.1 (Dhage [1]) Let ( , ) A  be a measurable space and let 

[ , ]a b  be a random interval in a separable ordered Banach space X. If 

 : [ , ] [ , ]clQ a b a b P  is a compact, upper semi-continuous right 

monotone increasing multi-valued random operator and the cone K in X is 

normal, then ( )Q   has a random fixed point in [a, b]. 

 

Then I have the following lemmas which are well-known in the literature, 

hence quote it. 

 

Lemma 3.1. (Lasota and Opial [8]) Let E be a Banach space. If dim (E) <   

and let F : J × E × ( )cp EP  be a random 
1

L -Caratheodory, then 

1
( )( ) 0FS x    for each .x E  

 

Lemma 3.2 (Lasota and Opial [8]) Let E be a Banach space, F a Caratheodory 

multi-valued operator with 1
( ) 0FS     and let 

1
: ( , ) ( , )L J E C J EL  be a continuous linear mapping. Then the 

composite operator   1

,( ) : ( , ) ( , )F bd clS C J E C J E L P has  

closed graph on ( , ) ( , )C J E C J E . 
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We consider the following set of hypotheses . 

0( )A The single-valued mappings 
0 : ,q R 1 : ,q R

2 :q R are measurable. 

1( )A  The single-valued mapping : ( ,R)k C J J R   is 

measurable, and there exists a measurable function  
1

: ( ,R )L J 
  

such that 

 
( )

0

, , , ( , ) | |

t

k t s y ds t y



    for all ,t s J  and y R . 

2( )A  The multi-valued mapping  ( , ) , ( , ), ( , ),t F t x t y t   

is jointly measurable for all  , , ( , )x y C J R M .  

3( )A  ( , , , )F t x y   is closed subset of R  for each ( , )t J    

and  ,x y R . 

4( )A  F is random 
1

L -Caratheodory. 

( 5A )For each ,  the multi-valued mapping 
1

( )( )Fx S x  is 

right monotone increasing in ( , )x C J R almost everywhere for .t J  

( 6A ) FRIGDI (1.1) has a strict lower random solution a and a strict upper 

random solution b with a   b    defined on J ×  . 

  



 

95 
 

4 Main Existence Results  

 

Theorem 2.4.2 Assume that the hypotheses (
0A ) − (

1A ) and (
1B ) − (

5B ) 

hold. Furthermore, if ( ) 1   , then the FRIGDI (1.1) has a random 

solution in [a, b] defined on J ×  . 

 

Proof. Let X = ( , )C J R . Define a random order interval [a, b] in X  which 

is well defined in view of hypothesis (
5B ). Now the FRIGDI (1.1) is 

equivalent to the random integral inclusion 

    
( )

22
0 1

0 0

( , ) ( ) ( ) ( ) , ( ), , , , ( ), , , ,
2

tt
q

x t q q F s x s k s x d ds



              
 

      
 

 

 t J                                                                                                                         

(3.2) 

for all  . Define a multi-valued operator 

: [ , ] ( )pQ a b X P  by 

 

2 12
0 1

0

( ) ( , ) | ( , ) ( ) ( ) ( ) ( , ) ,   ( )( )
2

( ) ( )

t

F

F

q
Q x u X u t q q v s ds v S x

S x

        



  
        
  



M

K

  (3.2) 

where  1
: , ( , )L J RK M   ( , )XM  is a continuous operator 

defined by 

22
0 1

0

   ( , ) ( ) ( ) ( ) ( , ) .
2

t
q

v t q q v s ds          K

  (3.3) 

Clearly, the operator ( )Q   is well defined in view of hypothesis ( 3B ). We 

shall show that ( )Q   satisfies all the conditions of Theorem 3.1. 
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Step I : First, we show that Q is closed valued multi-valued random operator 

on   × [a, b]. Observe that the operator ( )Q   is equivalent to the 

composition 1
( )FS K  of two operators on 1

( , )L J R , where

   1
: , ( , ) ,L J R X  K M M  is the continuous operator 

defined by (2.4.5). To show ( )Q   has closed values, it then suffices to 

prove that the composition operator 
1

( )FS K  has closed values on [a, 

b]. Let [ , ]x a b  be arbitrary and let {
nv } be a sequence in 

1
( )( )FS x  

converging to v in measure. Then, by the definition of 
1

( ),FS   

    
( )

0

( , ) , ( ), , , , ( ), , ,

t

nv t F t x t k s x d



         
 

   
 



 a.e. for t J .  

Since         
( )

0

, ( ), , , , ( ), , ,

t

F t x t k s x d



        
 
  
 

  is 

closed, 

  ( , )v t   

    
( )

0

, ( ), , , , ( ), , ,

t

F t x t k s x d



        
 
  
 

 a.e. for 

.t J   

Hence, 
1

( )( )Fv S x . As a result, 
1

( )( )FS x  is closed set in 

1
( , )L J R  for each  . From the continuity of K , it follows that 

 1
( )( )FS xK  is a closed set in X. Therefore, ( )Q   is a closed-

valued multi-valued operator on [a, b] for each  .  
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Next, we show that ( )Q   is a multi-valued random operator on X. First, we 

show that the multi-valued map 
1

( , ) ( )( )Fx S x   is measurable. Let 

 1
, ( , )f L J R M  be arbitrary. Then we have 

   1
1 1

, ( )( ) inf ( ) ( ) : ( )( )F FL
d f S x f h h S x       

    

0

( )

0 0

inf ( , ) ( , ) : ( )( )

( , ), , ( ), , , , ( ), , , .

T

F

tT

f t h t dt h S x

d f t F t x t k t s x s ds



  

      

  
   

  

  
     

  



 

 

It can be shown as in the Step I of the proof of Theorem 2.2 that the mapping 

  
( )

0

( , ) , , ( ), ,

t

t k t s x s ds



     is jointly measurable for all 

( , ).x X M  Again the mapping  , ( , , , )z d z F t x y   is 

continuous and hence, in view of hypothesis (
2B ), the mapping 

  
( )

0

( , , , ) ( , ), , ( ( ), ), , , ( ), , ,

t

t x f d f t F t x t k t s x s ds



       
  
    

  


 

is measurable from 1
( , )J X L J R   in to R


. Now the integral is 

the limit of the finite sum of measurable functions, and so, 

 1
, ( )( )Fd f S x  is measurable. As a result, the multi-valued mapping 

1

( )( , ) ( )FS      is jointly measurable. 

 

Define the multi-valued map   on J X   by 
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    
( )

0 0

( , , ) , ( ), , , , ( ), , , .

st

t x F s x s k s x d ds



          
 

   
 

 

 

We shall show that ( , , )t x   is continuous in t in the Hausdorff metric on 

R . Let { 
nt } be a sequence in J converging to .t J  Then we have 

 ( , , ), ( , , )H nd t x t x     

[0, ( )] [0, ( )]

[0, ( )] [0, ( )]

( ) ( ) ( , )

( ) ( ) ( , )

0    .

n

n

t t r

J

t t r

J

s s h s ds

s s h s ds

as n

 

 

  

  

 

 

 




 

                               

    

    

( )

0 0

( )

0 0

, ( ), , , , ( ), , , ,

, ( ), , , , ( ), , ,

nt s

H

st

d F s x s k s x d ds

F s x s k s x d ds





        

        

  
    

 

 
   

  

 

 

                      

[0, ( )] [0, ( )]

[0, ( )] [0, ( )]

( ) ( ) ( , )

( ) ( ) ( , )

0    .

n

n

t t r

J

t t r

J

s s h s ds

s s h s ds

as n

 

 

  

  

 

 

 




 

Thus the multi-valued map ( , , )t t x   is continuous and hence, by 

Lemma 2.2.2, the multi-valued mapping     
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    
( )

0 0

( , , ) , ( ), , , , ( ), , ,

tt

t x F s x s k t s x s ds ds



      
 
  
 

   

is measurable. Again, since the sum of two measurable multi-valued functions 

is measurable, the map 

    
( )

22
0 1

0 0

( , , ) ( ) ( ) ( ) , ( ), , , , ( ), , ,
2

tt
q

t x q q F s x s k s x d ds



              
 

     
 

 

is measurable. Consequently, ( )Q   is a random multi-valued operator on 

[a, b]. 

 

Step II : Secondly, we show that ( )Q   is right monotone increasing and 

multi-valued random operator on [a, b] into itself for each  . Let 

, [ , ]x y a b  be such that x y . Since (
4B ) holds, we have that 

1 1
( )( ) ( )( ).

i

F FS x S y   Hence ( )( ) ( )( )
i

Q x Q y  .  From 

(
4H ) it follows that ( )a Q a  adn ( )Q b b   for all  . 

Now ( )Q   is right monotone increasing, so we have for each  ,    

( ) ( ) ( )
i i

a Q a Q x Q b b       

 

for all x[a, b]. Hence Q defines a right monotone increasing multi-valued 

random operator  : [ , ] [ , ]clQ a b a b P . 

 

Step III : Next, we show that ( )Q   is completely continuous for each 

 . First, we show that ( )Q   ([a, b]) is compact for each  . 

Let { ( )ny  } be a sequence in ( )Q   ([a, b]) for some  . We will 

show that { ( )ny  } has a cluster point. This is achieved by showing that 

{ ( )ny  } is uniformly bounded and equi-continuous sequence in X. 

 

Case I : First, we show that { ( )ny  } is uniformly bounded sequence. Since 

the cone K in X is normal, the random order interval [a, b] is norm-bounded. 

Hence there is a real number r > 0 such that ( )ny     r for all n . 
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By the definition of { ( )ny  }, we have a 
1

( ) ( )( )n Fv S x   for some 

x[a, b] such that 

22
0 1

0

( , ) ( ) ( ) ( ) ( , ) ,    .
2

t

n n

q
y t q q v s ds t J          

 

Therefore, 

22
0 1

0

( , ) ( ) ( ) ( ) ( , )
2

t

n n

q
y t q q v s ds          

 

    

1

( )
22

0 1

0 0

22
0 1

( ) ( ) ( ) , ( ), , , , ( ), , ) ,
2

  ( ) ( ) ( ) ( )
2

st

r L

q
q q F s x s k s x d ds ds

q
q q h



             

     

 
      

 

   

 
P

 

for all t J , where ( ) ( )r a b   . Taking the supremum over t 

in the above inequality yields, 

                     

1

22
0 1( ) ( ) ( ) ( ) ( )

2
n r L

q
y q q h         

 

 

which shows that { ( )ny  } is a uniformly bounded sequence in 

 ( ) [ , ]Q a b . 

Next we show that { ( )ny  } is an equi-continuous sequence in

 ( ) [ , ]Q a b .  Let ,t J  . Then we have        

0 0

( , ) ( , ) ( , ) ( , )

t

n n n ny t y v s ds v s ds


       
 

       ( , ) ( , ) ,p t p            
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where, 

0

( , ) ( , )
t

rp t h s ds   . From the above inequality, it follows 

that 

( , ) ( , ) 0n ny t y       as  .t   

This shows that { ( )ny  } is an equi-continuous sequence in ( )Q  ([a, b]). 

Now { ( )ny  } is uniformly bounded and equi-continuous for each 
, so it has a cluster point in view of Arzela-Ascoli theorem. As a result, 

( )Q   is a compact multi-valued random operator on [a, b].  

 

Case II : Next we show that ( )Q   is an upper semi-continuous multi-

valued random operator on [a, b]. Let { ( )nx  } be a sequence in [a, b] such 

that *( ) ( )nx x  . Let { ( )ny  } be a sequence such that 

( ) ( )n ny Q x   and 
*( ) ( ).ny y   We shall show that 

* *( ) ( ) .y Q x   Since ( ) ( )n ny Q x  , there exists a 

1
( ) ( )( )n F nv S x   such that       

22
0 1

0

( , ) ( ) ( ) ( ) ( , ) ,   .
2

t

n n

q
y t q q v s ds t J          

 

We must prove that there is a 
1

* *( ) ( )( )Fv S x   such that 

22
0 1

0

( , ) ( ) ( ) ( ) ( , ) ,   .
2

t
q

y t q q v s ds t J           

 
Consider the continuous linear operator 

 1
: , ( , ) ( , )L J R X  L M M  defined by 

0

( , ) ( , ) ,   .
t

v t v s ds t J  L  
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Now 

2 22 2
0 1 * 0 1( ) ( ( ) ( ) ( ) ) ( ) ( ( ) ( ) ( ) ) 0    

2 2
n

q q
y q q y q q as n           

   
           

   

 

From lemma 2.2, it follows that 
1

( )FS L  is a closed graph operator. 

Also from the definition of L , we have        

 2 12
0 1( , ) ( ( ) ( ) ( ) ) ( ) ( )

2
n F n

q
y t q q S x          L

. 

Since 
*( ) ( )ny y  , there is a point 

1

* *( ) ( )( )Fv S x  . such 

that 

22
* 0 1 *

0

( , ) ( ) ( ) ( ) ( , ) ,   
2

t
q

y t q q v s ds t J          

. 

This shows that ( )Q   is a upper semi-continuous multi-valued random 

operator on [a, b]. Thus ( )Q   is an upper semi-continuous and compact and 

hence completely continuous multi-valued random operator on [a, b]. Now an 

application of Theorem 3.1 yields that ( )Q   has a random fixed point 

which further implies that the FRIGDI (2.1.1) has a random solution on J × 

 . This completes the proof.  
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