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Abstract— Object recognition, object detection, and semantic 

segmentation are fundamental components of the intelligent 
vehicle. Recently, there have been various methods proposed to 
create a reliable and accurate model to provide intelligent 
assistance to drivers. However, a reliable and accurate model in 
adverse conditions such as snow, rain, and fog remain a problem 
for advance driving assistance systems. The methods proposed 
only effectively solve the problem in a specific condition. 
Therefore, in this work, we focus on performing semantic 
segmentation in normal, rainy, foggy, and low light conditions 
using Efficient Neural Network (ENet) and ResNet18 and 
subsequently evaluating the trained model’s performance in these 
conditions. In the experiment, we used a daytime dataset from 
CamVid and synthetically transformed the daytime dataset into 
rainy, foggy, and low light conditions. To verify the accuracy of the 
proposed method, the Intersection over Union (IoU) is used, and 
the result is elaborated in the section result and discussion. This 
approach only performs accurately during daylight. From the 
experiments, both methods do suffer from various conditions, but 
the ENet method performs better in certain conditions compared 
to ResNet18. 
 

Index Terms— Semantic segmentation, object detection, deep 
learning, ENet, vehicle intelligence 

I. INTRODUCTION 
BJECT detection and semantic segmentation are two 
important techniques used by researchers to create a 

reliable autonomous vehicle. In [1], the results obtained show 
that when object detection and semantic segmentation were 
applied together, they improved the model efficiency compared 
to training separately. A semantic task in an automated vehicle 
needs to be accurate, robust, and real-time as discussed in [2]. 
Scene understanding is mainly about semantic segmentation, 
object detection, object recognition, and the relationship 
between objects [3]. The relationship between an object in a  

 
 

 
driving scene includes the understanding and prediction of  
pedestrians [4], vehicles [3], traffic lights [5], and scenes in 
various conditions [6]. This is why vehicle-related scene 
understanding plays an important role in autonomous 
vehicles. Based on [7], labeling surface in scene 
understanding can be summarized as the following: (1) 
Labelling visible surfaces and objects: apply the classifier to 
label pixels into two groups, which are visible foreground 
and background, using an image labeling algorithm and a 
pre-trained object detector; (2) label hidden surfaces; and 
(3) region overlay as a scene and shape. 

However, with the development of deep learning, 
researchers started to adopt end-to-end models because the 
use of deep learning has increased their performance in 
complex conditions. One well-known way to implement 
deep learning is through the Convolution Neural Network 
(CNN). Based on the approach, it has been applied to traffic 
scenes [ 5 ] , pedestrian detection [8], lane detection [9], 
and weather detection [10]. Deep learning understands the 
scene by separating it into several key aspects. First, it 
determines the classification of each pixel through deep 
learning. Then the deep neural network will be able to 
recognize regions in the scene with boundaries. As the focus 
of learning goes deeper, the deep learning neural network 
can classify the objects in the scene [11]. To improve the 
efficacy of the semantic segmentation algorithm, the 
application of CNN to semantic image segmentation is 
proposed in [12].  

The structure of CNN consists of two layers, which are 
the extraction layer and the feature map. There are many 
examples of CNN architecture that are well known, such as 
LeNet [13], AlexNet [14], GoogleNet [15], Visual 
Geometry Group (VGGNet) [16], and Residual neural 
network (ResNet) [17]. The ResNet architecture contains a 
skip connection which can improve the learning ability of a 
network. It could also train up to hundreds or thousands of 
layers and still perform well. Based on [18], Efficient 
Neural Network (ENet) has adopted ResNet strategies 
where the ResNet architecture contains skip connection, 
which can improve the learning ability of a network. It could 
also train up to hundreds or thousands of layers and still 
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perform well. ENet was then tested on three different 
datasets of road scenes and indoor scenes. The average 
accuracy and intersection over union (IoU) metrics show that 
ENet is faster than SegNet. 

Semantic segmentation is essential for scene 
understanding. It classifies each pixel in the image into a  
specific group. In [19], the model performed object 
detection by labeling pixels belonging to the same group. 
The method is used to detect roads, understand traffic signs, 
and detect the identification of vehicles and pedestrians. The 
detector includes the road lane as a reference to detect 
objects which might affect the driving situation, and then it 
excludes the objects that might affect the driving condition 
from the recognition task. The accuracy of detection and 
recognition of these objects will be the guideline to ensure 
the safety of autonomous vehicles. At the same time, image 
information can be applied to understand scenes in bad 
weather conditions, such as fog, snow, and sand storms. 

The rest of this paper is arranged as follows. Section 2 
outlines some related work on object detection, semantic 
segmentation, and ENet. Section 3 describes and elaborates 
on the details of the methodology and ENet architecture as 
well as the dataset used in the evaluation. Section 4 analyses 
and discusses the results obtained from the experiment 
conducted. Finally, section 5 outlines the conclusion and 
future work. 

II. RELATED WORKS 
This section reviews the most relevant works to this paper, 

including object detection, deep learning, semantic 
segmentation networks, and ENet. 

A. Object detection 
Object detection is the task of recognizing and localizing 

multiple objects in a scene with bounding boxes. Based on 
[20], object detection methods are mainly divided into two-
stage and single-stage methods. Extracting Regions of Interest 
(ROI) or Region Proposals (RP) from a scene of several groups 
of objects is the first step of a two-stage method. Then it is 
verified, classified, and separated. The Region-based 
Convolutional Network (RCNN) is one of the state-of-the-art 
detection methods and a classic object detection model as 
discussed in [21]. As for the single-stage method, it does not 
have an RP module, but instead, the aim is to map features 
directly to the bounding box. For example, based on [22], the 
YOLO model processes images in real-time at 45 frames per 
second and YOLO has twice the mean average precision of 
other real-time systems. However, YOLO still lags in terms of 
accuracy. 

B. Deep learning 
There are different types of deep learning techniques. For 

example, the Fully Connected Neural Network (FCNNs), 
CNN, recurrent neural network, generative adversarial 
network, deep reinforcement learning, and autoencoder. Deep 
learning is a method where the computer mimics the human 
brain as it makes use of a deep neural network. Its algorithm 
consists of an input layer, an output layer, and a hidden layer. 

Recently, deep neural networks have been applied in various 
sectors, for example, autonomous vehicles. In [23], deep 
learning is used to achieve automatic detection of pedestrians. 
A method in use is DeepLabv3, which contains various 
semantic information from the encoder, which allows 
extracting features at arbitrary resolution. This work focuses on 
two classes, which are pedestrians and background. Based on 
its accuracy, the approach shows that the pedestrian detection 
error is still huge. Based on [24], a traditional method of 
detection was divided into 3 phases which are selecting the 
region, extracting features, and classifying with a classifier. 
The problem with these methods is that the region of selection 
strategy is not specific and the hand design does not react well 
to change in conditions. Therefore, with deep learning, 
detection and classification have been more efficient than with 
the traditional method. 

C. Semantic segmentation 
 

The objective of semantic segmentation is to label each 
pixel with semantics (pixel-level) or by simultaneously 
detecting objects and doing per-instance pixel labeling 
(instance-level). The Fully Convolution Network (FCN) is 
the first to adopt a full convolution network for semantic 
segmentation. In [25], fully connected layers in a CNN 
classifier for predicting classification are replaced with 
convolutional layers to produce output maps. These maps are 
then be up-sampled to dense pixel labels by deconvolution. 

One semantic segmentation application in bad weather is 
shown in [26], where the authors used images of fog 
conditions and applied a specific training so that the 
networks learn to focus on the undisturbed sensor and ignore 
unknown noise. The evaluation of the model was applied in 
good weather and with unknown disturbance conditions. The 
work has also proposed using early and late fusion to 
increase the accuracy in such conditions. Although the model 
has created a solution for foggy conditions, the same method 
could not be applied to other weather or different light 
conditions because the method used only focuses on a very 
specific problem. 

In this work, ENet semantic segmentation is applied to 
several conditions, such as rain [27], fog [26], low light [28], 
and day [29]. In previous methods, bright and clear 
surroundings images were favorable for being used to test a 
new method. However, the method proposed is only applicable 
to that trained condition. There are 3 types of methods to 
evaluate the accuracy of semantic segmentation prediction, 
which are based on region accuracy, contour-based score, and 
measuring per image. The examples of region-based 
accuracies are overall pixel, per-class (PC), Jaccard Index, and 
trimap. As for object detection, mAP (mean Average 
Precision) is popular for measuring the accuracy of object 
detectors. The metrics are usually evaluated in comparison to 
ground truth data. For object detection, the ground truth 
includes the image, classes of objects, and bounding boxes for 
each object in the image [30]. Once the bounding box of 
prediction and the corresponding ground truth are detected, 
intersection over union (IoU) can be applied. IoU is the ratio 
between the intersection and union of the prediction box and 
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the ground truth box. It is also known as the Jaccard index [31]. 
The IoU metric is very simple. The target and prediction masks 
are divided by the total number of pixels present in both masks. 
The score is usually calculated for each class. Besides IoU, 
there is another method for evaluating semantic segmentation 
accuracy by using pixel accuracy metrics. Accuracy is 
obtained by taking the ratio of correctly classified pixels 
(Accuracy = [TP+TN]/[TP+TN+FP+FN]). Many datasets 
have been published for semantic segmentation research, such 
as CamVid [32], Cityscape [33], KITTI [34], Toronto City 
[35], and ApolloScape [36]. Most of the reviewed datasets 
provide ground-truth labels for 2D object detection and 
semantic segmentation tasks. Based on [32] and [37], there are 
32 semantic classes. The classes include animals, pedestrians, 
children, rolling carts/luggage, bicyclists, motorcycles, cars, 
trucks, trains, roads (drivable surface), shoulder roads, 
drivable lane marking, non-drivable, sky, tunnel, archway, 
building, wall, tree, vegetation, fence, sidewalk, parking block, 
pole, traffic cone, bridge, sign, text, and traffic light. 

D. Semantic segmentation 

The state-of-the-art CNN architecture network is going 
deeper by day. AlexNet had only 5 convolutional layers, while 
the VGG network and GoogleNet had 19 and 22 layers 
respectively. However, increasing network depth does not 
work by stacking up layers together. The main problem faced 
by the deep network is that the gradient back propagates to its 
earlier layer. To overcome this problem, auxiliary loss in the 
middle of the layer is added as extra supervision, but this 
problem was not solved until ResNet was introduced. The core 
idea of ResNet is that it introduces a shortcut connection that 
skips one or more layers in the architecture. ResNet was not 
the first method of using shortcut connection. It was also found 
in Long Term Short Memory (LSTM) and highway networks. 
ResNet is gaining more popularity in the research community 
and its architecture is being studied frequently. The entire 
architecture of ENet is largely based on ResNets. There are 2 
main blocks in the architecture, which are the initial block and 
the bottleneck module. The initial block consists of 16 x 256 x 
256 after concatenation of the convolution (13 filters) and 
MaxPooling (2 x 2). All bottlenecks have the same structure 
and each branch consists of three convolutional layers. The 
first projection reduces the dimensionality, while the latter 
projection expands the dimensionality. In that layer, there is a 
convolution. These are examples of the ENet model used in 
semantic segmentation [38], intelligent vehicles [39], road 
lane marking [40], and mapping of road lanes [41]. While in 
[39], the research shows the comparison of ENet CRF Lidar 
and its performance in efficiency and precision. The 
experiment results indicate that ENet-CRF-Lidar can provide 
reliable multi-scale object recognition performance. 

III. METHODOLOGY 
In this section, the proposed ENet architecture is described 

in subsection A, which is based on ENet, a deep neural 
network architecture for real-time semantic segmentation 
[18]. Then implementation of training and testing is 
discussed subsequently, as well as the dataset. To evaluate 

the performance of ENet, the network is trained and tested 
using the collected dataset which contains traffic scenes. 

A. Network Architecture 
Based on [18], the ENet model is split into the initial block 

as depicted in Figure.1 and the bottleneck module is shown 
in Figure 2. The  ENet initial block consists of MaxPooling 
performed with non-overlapping 2×2 windows, and the 
convolution has 13 filters, which sums up to 16 feature maps 
after concatenation. All bottlenecks have the same structure. 
Each branch consists of three convolutional layers. The 
“first” 1 x 1 projection reduces the dimensionality, while the 
latter 1 x 1 projection expands the dimensionality. In 
between these convolutions, a regular, dilated or full 
convolution (no annotation) takes place. Batch normalization 
and PReLU are placed between all convolutions. To 
regularize the bottleneck, Spatial Dropout is used. 
MaxPooling on the initial block is added when the bottleneck 
is downsampled. The first branch is replaced by a non-
overlapping 2 x 2 convolution and the activations are zero-
padded to equal the number of feature maps. In the decoder, 
MaxPooling is replaced by MaxUnpooling.  

 
 
Figure 1 . Initial Block of the model 
 

 
 
Figure 2 . ENet bottleneck module. 
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B. Dataset 
In this work, the dataset was obtained from the CamVid 

dataset [40]. The dataset contains traffic scenes such as 
pedestrians, traffic lights, and vehicles as shown in Figure 3. 
The CamVid dataset only provides an image with a bright light 
condition, as shown in (a) and (b), while (c) and (d) are datasets 
synthetically transformed into rain conditions, where (e) and (f) 
are transformed into fog conditions. (h) and (i) are transformed 
into low light conditions. These photos are transformed with an 
online photo converter. The number of images in CamVid is 
701. About 367 images are transformed for each condition, 
which makes the total number of images in the dataset 1468. 
Besides the dataset, the label ID images are also obtained from 
CamVid. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 
Figure   3. Example of a dataset for test and training. 

 
C. Training and testing 

In this paper, the training stage has been carried out under 
several conditions, such as normal, fog, rain, and low light 
conditions. The experiment is divided into three types:(1) 

Experiment A – images of the normal condition are used for 
training and testing. 367 images were used for training and 100 
for testing. (2) Experiment B – images with various conditions 
are used for training and it is tested on images with various 
conditions such as fog, rain, and low light conditions. (3) 
Experiment C – images with normal conditions are used for 
training while images with various conditions are used for 
testing. About 367 images are used for training and 100 images 
are used for testing. 

 

D. Performance Metrics 
To evaluate the performance of semantic segmentation, 

most previous works have used the intersection over union 
metric or pixel accuracy. The Intersection-over-union (IoU) is 
also known as the Jaccard index and is very effective for 
compare pixel accuracy or Dice Coefficient (F1 Score). IoU is 
the intersection of the pixels or overlapping area found in both 
the prediction mask and the ground truth mask over all pixels 
found in either the prediction or target mask, known as the area 
of union. Therefore, the mean IoU score is used to calculate 
our semantic segmentation prediction and the concept as 
shown in Figure 4. The number of images used for training 
and testing is casually choosen based on the capacity of the 
CPU and GPU. 

 
Figure 4. Intersection-over-union (IoU). 

IV. RESULTS AND DISCUSSIONS 
In this section, the results of experiments A, B, and C will 

be discussed in detail. For these experiments, the CamVid 
dataset provides traffic scene images and it consists of 32 
semantic classes. The ground truth and predicted 
segmentation image. Each object has a specific color to 
represent the pixel group. Therefore, Figure 5 shows the list 
of RGB color codes for each semantic class. 

 
Pole Road Road marking Pavement Tree Sign symbol 

Fence Car Pedestrian Bicyclist Building Sky 
Traffic sign Void  

 
Figure 5. Color code for segmentation 
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Experiment A: Normal condition is used for training and 
tested in normal condition. 
 

In this experiment, the dataset used to train and test the ENet 
semantic segmentation model was taken under natural 
daylight, and the sample result of the segmentation is shown in  

Figure 6. Based on the visual comparison between ground 
truth images and ENet segmentation images, the model was 

able to segment the image into distinct classes such as sky, 
buildings, poles, road pavement, trees, fences, cars, and 
pedestrians based on the color assigned by ENet. Generally, it 
can be seen that most of the objects were segmented correctly. 
However, a small object such as a traffic sign was not detected 
accurately. Besides, road marking were also not detected. 
However, road making can be dealt with effectively with 
specific training and template features. The percentage of 
accuracy measured in IoU for Experiment A is 94.3%. 

   
Input Image Ground Truth ENet Segmentation 

Figure 6. The test result of ENet semantic segmentation for Experiment A 

Experiment B: Various condition is used for training and tested 
in various condition 
 

For experiment B, the conditions of images used to train and 
test the ENet model are foggy, low-light, and rainy. Three ENet 
models are trained separately for each condition and tested on 
images containing similar conditions. The semantic 

segmentation result in Figure 7 shows that the ENet model can 
segment correctly only images under low light conditions. 
While for images with fog and rain, it could only recognize 
parts of buildings and roads correctly. Other objects have poor 
detection accuracy. The IoU for fog, low light, and rain 
conditions are 47.7%, 88.9%, and 43.1% respectively.

 

   

   

   
Input Image Ground Truth ENet Segmentation 

 
Figure 7. The test result of ENet semantic segmentation for Experiment B. The first row shows the result for foggy condition, the middle row shows the result for 
low-light condition and the bottom row shows the result for rainy condition 
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Experiment C: Normal condition is used for training and 
tested in various conditions. 

For experiment C, images of normal conditions are used to 
train the ENet model and images of various conditions are used 
for testing. The result in Figure 8 shows that the model failed 
to correctly segment objects in the image. Only part of the road 
and building are correctly segmented. Other than that, it was 
not recognized and detected accurately at all. Based on results 

in Experiment A and B, ENet performance highly depends on 
the variations of images used to train the model. Compared to 
the results of Experiment A and C, even though both models 
were trained on the normal condition, the results shows that 
the model could not generalize well to unseen conditions. The 
model works well when tested under normal conditions, but 
fails when tested under different conditions. The percentage of 
IoU for fog, low light, and rain conditions are 33.1%, 37.6%, 
and 38.7%. This is tabulated in Table I. 

 

   

   

   
Input Image Ground Truth ENet Segmentation 

 
Figure 8. The test result of ENet semantic segmentation for Experiment C. First row shows the result for foggy condition, the middle row shows the result for low-
light condition, the bottom row shows the result for rainy condition. 
 

TABLE I  
Summary of Intersection Over Union (IoU) performance from experiment 

Experiment 
A, B and C 

Condition ENet IoU ResNet18 IoU 

A Train normal, 
test normal 

94.3% 62.0% 

B Train fog, test 
fog 

47.7% 53.6% 

 Train low 
light, test 
low light 

88.9% 49.3% 

 Train rain, test 
rain 

43.1% 42.0% 

C Train normal, 
test fog 

33.1% 56.1% 

 Train normal, 
test low- 
light 

37.6% 30.3% 

 Train normal, 
test rain 

38.7% 30.5% 

 

Based on the results of ENet IoU in Table 1, the highest IoU 
is obtained when test and training are using the same dataset at 
the normal condition as shown in experiment A. In experiment 
B, the low-light condition produces acceptable IoU at 88.9%, 
while foggy and rainy conditions produce poor IoU at 47.7% and 
43.1% respectively, even when trained and tested using the same 
conditions. However, the result drastically changes when the 
normal dataset is used for training and the various conditions are 
used for testing. Not more than 40% of accuracy was detected 
when testing in rain, fog, and low light conditions. As for 
ResNet18, the highest percentage of overall performance is 
62%, which is while using the normal condition dataset for test 
and training. The result shows that the foggy dataset in 
experiments B and C scores 53% and 56%, low light scores 
49.3% and 30.3%, and the rain dataset scores 42% and 30.5% in 
experiments B and C.  

After performing semantic segmentation in normal, rainy, 
foggy, and low light conditions, the results show that the 
accuracy of semantics can be affected by the conditions. This 
proves that most existing models proposed only work accurately 
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when datasets are in bright light or normal conditions, instead of 
robust weather such as foggy, rainy, and low light. The accuracy 
of semantics is drastically affected, as shown in experiments B 
and C on both methods. The result also shows that ENet was a 
better method than ResNet18 in terms of normal and low light 
conditions. However, in the condition of rain, ENet performs 
slightly better than ResNet18. While in foggy conditions, 
ResNet accuracy is better than ENet. Overall, both methods are 
affected by the various conditions, but the ENet method 
performs better in certain conditions compared to ResNet18. 

V. CONCLUSIONS 
 

In this paper, the problem of semantic image segmentation 
under various conditions, such as fog, rain, and low light 
conditions, was presented and so was the evaluation of ENet 
and existing method performance. The findings from the 
simulation work have shown that the Enet method can 
accurately segment the image under normal conditions with an 
IoU of 94.3%. However, the performance is poor when it is 
tested using images under rain, fog, and low light intensity 
conditions, even when the model is trained using similar 
conditions. ENet performs slightly better compared to 
ResNet18 on normal, rain, and low intensity. As for foggy 
conditions, ResNet is more accurate compared to ENet. This 
supports the idea that only certain methods will work 
accurately in certain conditions. Therefore, to improve the 
accuracy during rain, fog and low light, it can apply 
enhancement and use a variety of traffic scenes as a dataset to 
improve training.  
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