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Abstract— Fingerprint presentation attack, which involves 
presenting spoof fingerprints to fingerprint biometric 
sensors to gain illicit access, is a significant challenge faced 
by Automatic Fingerprint Identification Systems (AFIS). 
As a result, various hardware-based and software-based 
approaches have been posited to help remedy this concern. 
However, the software-based methods have seen enormous 
utilisation relative to the hardware-based techniques due to 
their robust cognitive feature extraction for spoof detection. 
Nonetheless, most software-based techniques that utilise 
handcrafted features proffer shallow features for 
discriminating against spoofs due to their manual feature 
extraction process, which, as a result, affects the model's 
robustness. Motivated by this concern, we propose a deep 
transfer learning approach to automatically learn deep 
hierarchical semantic fingerprint features as a means of 
discriminating against spoofs. Experiments were conducted 
on the LivDet competition standard database, 
encompassing datasets from LivDet-2009, 2011, 2013, and 
2015, resulting in the acquisition of real fingerprints and 
fake fingerprints fabricated from twelve (12) different 
spoofing materials. The developed model recorded an 
average classification accuracy of 99.8%, a sensitivity of  
99.73% and a specificity of 99.77%, showcasing a state-of-
the-art performance. 
Index Terms—Presentation Attack; Spoof Detection; Deep 
Transfer Learning; DenseNet201. 
 

I. INTRODUCTION 
N recent times, with an unprecedented rise in technology, 
biometrics has played a vital role in the use of IoT 

applications, protecting user confidentiality in diverse 
applications. According to [1]–[5], the fingerprint biometric 
modality is the most widely used biometric modality for access 
control functions.  

 
 
 
 

 
Due to its vast international utilisation, it is greatly hampered 
by various security threats such as identity theft, account 
hacking, unauthorised access, but to mention a few. However, 
amongst all forms of threats or attacks faced by Automatic 
Fingerprint Recognition Systems (AFIS), the most predominant 
is the fingerprint presentation attack (i.e., fingerprint Spoofing). 
This form of attack involves the fabrication of fake fingerprints, 
using various ubiquitous materials like latex, eco-flex, clay, 
wood glue, and gum to circumvent fingerprint scanners to 
achieve unauthorised access to the system. 

Nevertheless, in a quest to counter this problem, several 
presentation attack detection approaches have been posited. 
However, as fingerprint sensing technology advances, so does 
the spoofing technology, which proliferates organisations' 
difficulty to have secured AFIS that prevent systems' 
circumvention. Based on physical observations, it is nearly 
impossible to discern a clear difference between real and 
spoofed fingerprints on the sensory imagery (i.e., point 1), as 
shown in Figure 1. Hence, various software-based approaches 
are used to extract global-level, local-level, or fine-level 
fingerprint features as determinants for spoof detection. 

 
Traditionally, handcrafted textural features extracted from 

the fingerprints are used to decipher between real and fake 
fingerprints [6]. Due to the nature of these kinds of features, 
high-resolution images and exhaustive feature tuning is 
necessary. As a result, they are easily influenced by computed 
features and noise. However, to counter this issue, Menotti et 
al. developed a CNN-based network called 'SPOOFNET' [7], 
training on LivDet 2013 dataset. This supervised network learns 
intrinsic fingerprint features, resulting in a significantly 
enhanced classification performance. Towing a similar 
paradigm, [8] and [9] deployed standard CNN networks 
(VGGNet, AlexNet), pre-trained models on a large ImageNet 
dataset and fine-tuned on LivDet dataset. Findings from [8],[9] 
showcased that using pre-trained models with transfer learning 
progressively enhances performance. Motivated by these 
works, many CNN-based fingerprint spoof detection methods 
have been proposed [7],[9]–[12]. However, despite the state-of-
the-art performance manifested by these fingerprint spoof 
detection methods, fingerprint spoof detection models 
developed using handcrafted features through manual selection 
and extraction of fingerprint features, usually proffer shallow 

 

Fingerprint Presentation Attack Detection Using 
Deep Transfer Learning and DenseNet201 

Network 
Divine S. Ametefe, Suzi S. Seroja, and Darmawaty M. Ali 

I 

This manuscript is submitted on 10th January 2021 and accepted on  19th 

April 2021. D.S. Ametefe, S.S. Sarnin and D.M. Ali are with the School of 
Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 
40450 Shah Alam, Selangor (e-mail: divinea10@gmail.com, 
suzis045@uitm.edu.my, darma504@uitm.edu.my) 

 
 1985-5389/© 2021 The Authors. Published by UiTM Press. This is an open 
access article under the CC BY-NC-ND license (http://creativecommons.org 
/licenses/by-nc-nd/4.0/). 

doi.org/10.24191/jeesr.v19i1.013 

mailto:divinea10@gmail.com
mailto:uzis045@uitm.edu.my
mailto:darma504@uitm.edu.my


JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021 

 
 

96 
 

features of samples for discrimination instances. Also, models 
developed using the CNN-based paradigm, involving the 
utilisation of pre-trained-models such as VGGNet, AlexNet 

etc., [7],[9]–[12] have some shortcomings with memory 
efficiency, computational efficiency, and feature reusability 
[14]. 

 
Figure 1: Points of attacks on a generic fingerprint biometric system 

Motivated by these concerns, we propose a deep transfer 
learning approach to automatically learn deep hierarchical 
semantic fingerprint features as a means of discriminating 
against spoofs. We also employed DenseNet201 as a pre-
trained model to enhance memory efficiency, computational 
efficiency, and feature reusability. Experiments were conducted 
on the standard LivDet Competition database (LivDet 2009, 
2011, 2013, 2015), involving real fingerprints and fake 
fingerprints fabricated from twelve (12) distinct spoofing 
materials. This paper's remainder is structured as follows; Some 
related literature works are highlighted in section 2. The study's 
proposed method and evaluation of experimental results are 
proffered in sections 3 and 4, respectively. Section 5 concludes 
the study. 

II. RELATED WORKS 
This section briefly highlights existing literature relating to 

Presentation attack detection, fingerprint image classification 
schemes, and DenseNets.  

Due to the enormous security threat posed by fingerprint 
spoofing practices, presentation attack detection has become a 
biometrics priority. Presentation attack detection involves 
attackers maliciously fabricating fingerprint impressions on 
ubiquitous materials like gum, gelatin, playdoh, etc., and 
presenting such spoofed fingerprints to circumvent AFIS [15]. 
There are two essential presentation attack detection 
techniques, encompassing hardware-based and software-based 
approaches. Hardware-based approaches involve using 
additional sensing devices to garner other inherent live 
characteristics like blood pressure, blood sugar, skin distortion, 
or odour etc., [15],[16]. On the other hand, software-based 
approaches involve extracting various handcrafted features 
from the sensor image and then classifying them as live or fake 
[17]–[19]. These handcrafted features can be broadly 
categorised as exterior anatomical features like ridge strength, 
pore location and their distribution, continuity, and clarity [20], 
etc., or physiological features like perspiration patterns [3] and 
textural based features or statistical features like Weber Local 
Descriptors (WLD) [21], rotation-invariant Local Phase 
Quantisation (LPQ) [22] features, or Binarized Statistical 

Image Features (BSIF) [23] or Local Binary Patterns [24], etc. 
or a combination of these features.  

The implementation of textural features involving Local 
Binary Pattern (LBP) and Gabor filters was the approach 
adopted by [25] because LBP proffers good textural variation 
for liveliness detection [24]. In the 2015 LivDet competition, 
[8] obtained state-of-the-art accuracy while utilising LBP and 
transfer learning for binary classification. In this approach, LBP 
features were extracted from the fingerprint samples' pre-
processing and then classified using pre-trained standard 
models VGG, AlexNet. A similar technique was harnessed by 
[9] and [7], obtaining significantly better results than spoof 
detection using only handcrafted features. However, these 
forms of approaches resulted in poor cross-sensory and cross 
material evaluations. Hence, to overcome this, [26] developed 
a robust spoof detection method exploring the local minutiae-
based patches with MobileNet-v1 as the training network [27]. 
This technique proved efficient, producing state-of-the-art 
results for intra-sensor, inter-sensor, cross-material, and cross 
sensor over three datasets (LivDet 2011, 2013, 2015). However, 
despite resulting in a good performance, this method had some 
lapses, in that the minutiae point extraction necessitates the use 
of high-resolution input fingerprint images (> 500dpi). The 
two-stage training process involved makes the model not 
operate in an end-to-end fashion like [25]. 

DenseNet [14] as a network is extensively used for various 
applications like image classification [28], [29], segmentation 
[30], image super-resolution [31] etc. These DenseNet features 
can be attributed to their memory efficiency, computational 
efficiency, and feature reusability properties. This network 
alleviates the vanishing gradient problem and strengthens 
feature propagation. Its feature reusability ensures memory and 
computational efficiency. Hence, in the quest to counter facial 
presentation attacks, [32] used DenseNet as the based network. 
A study by [33] also harnessed DenseNet coupled with LSTM 
for audio spoof attack detection. However, DenseNet201 has 
not been used with deep transfer learning for fingerprint 
presentation attack detection to the best of our knowledge. 
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III. PROPOSED METHODOLOGY 
We propose a deep transfer learning approach, utilising the 

DenseNet201 network to develop a real fingerprint classifier for 
countering presentation attacks. This technique facilitates the 
proposed model to automatically garner and learn inherent 
fingerprint features for discriminating against spoofs. This 
approach was implemented on the standard LivDet competition 
database, encompassing the LivDet 2009, 2011, 2013, and 2015 
datasets. Real fingerprints and fake fingerprints made from 
twelve (12) different spoofing materials were utilised for 
training the model. All available fake fingerprints from the 
various spoofing materials were combined into a single fake 
fingerprints label. Hence, two essential labels (real and fake 
fingerprint samples) were realised and used to develop a 
fingerprint binary classifier, as shown in Figure 2.  

 

Figure 2: Real and fake fingerprint dataset classes 

A. Fingerprint Categorisation 
One of the critical processes essential in deep transfer 

learning is the categorisation of the available datasets. Three 
important categorisations of the available datasets were 
implemented, encompassing the training datasets, validation 
datasets, and testing datasets. The training dataset is used for 
the model's cognitive training to possess the dexterity of 
discerning between real and fake fingerprints. The validation 
dataset is used as a pre-test dataset during the training process 
to determine the trained model's efficacy across the various 
epochs. Finally, the test dataset is used to probe the practical 
robustness of the model. A set of holdout datasets not used for 
training, validation, and testing was also created to further 
examine the finalised model's practical effectiveness. A total of 
60,000 fingerprint datasets were obtained and used for the 
development of the model. However, since there isn't a 
standardised dataset categorisation paradigm available, we 
adopted a dataset split ratio of 8:1:1 analogous to [34] across 
the training, validation, and testing samples, respectively, as 
highlighted in TABLE 1. 

 

 
TABLE I 

PROPOSED CATEGORISATION OF FINGERPRINT DATASETS 
 

Fingerprint  
Classes 

No. Training 
 Dataset 

No. Validation 
Dataset 

No. Testing 
Dataset 

Total 
Dataset 

Holdout 
Dataset 

Real Fingerprnts 24,000 3,000 3,000 30,000 10 
Fake (Spoof) Fingerprints 24,000 3,000 3,000 30,000 10 

 

The fake fingerprint datasets consisted of twelve (12) 
fingerprint spoofing materials encompassing Body-Double, 
Ecoflex, Gelatin, Latex, Liquid_Ecoflex, Modasil, OOMOO, 

Playdoh, RTV, Silgum, Silicone, WoodGlue, as represented by 
Figure 3. 
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Figure 3: Fake fingerprints made from twelve spoof materials used for the study 

B. Dataset Pre-Processing 
The fingerprint images have random sizes due to the 

variation of fingerprint sensing devices used by LivDet 
Competition to capture fingerprint impressions. Hence, to 

ensure best practice and enhanced training experience, a 
suitable image scaling size was adopted. A scaling size of 224 
x 224 was implemented by [34] for attaining state-of-the-art 
image classification. Hence, this study also harnessed a similar 
scaling size (224 x 224), as shown in Figure 4. 

 
Figure 4: Rescaling of Fingerprint Images 

The rescaling implementation resulted in low memory 
consumption, reduced computational time, and the fingerprint 
profile's complete usage without losing fingerprint details. 
Dataset normalisation was also introduced to scale the 
magnitude of fingerprint image attributes in the range of 0 and 
1, which served as an image filter (feature extraction). The 

proposed fingerprint binary classification model was developed 
through an automatic exploration of two (2) salient features 
through the implementation of deep transfer learning, 
encompassing the global-level and local-level features as 
showcased by Figure 5. 

 
Figure 5: Global-level and Local-level fingerprint features 

C. Deep Transfer Learning Process 
The transfer learning framework is hinged on three critical 

parameters, encompassing the domains, tasks, and marginal 
probabilities [35]. This framework can be defined as: 

A domain, 𝐃𝐃, is defined as a two-element tuple consisting of 
feature space, 𝒙𝒙, and marginal probability, 𝑷𝑷(𝐗𝐗), where 𝐗𝐗,  is a 
sample data point. Thus, its mathematical representation is 
given as 𝐃𝐃 = {𝒙𝒙,𝑷𝑷(𝐗𝐗)}. 
A Domain consists of two components: 𝐃𝐃 = {𝒙𝒙,𝑷𝑷(𝐗𝐗)}. 
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Feature space: 𝒙𝒙  
Marginal distribution: 𝑷𝑷(𝐗𝐗),𝐗𝐗 = {𝑥𝑥1, … … … 𝑥𝑥𝑛𝑛}, 𝑥𝑥𝑖𝑖 ∈ 𝒙𝒙. 
Here 𝒙𝒙𝒊𝒊 represents a specific vector as described in the above 
depiction. A task, 𝐓𝐓, on the other hand, can be defined as a two-
element tuple of the label space, y, and objective function, η. 
The objective function can also be denoted as P (y| Χ) from a 
probabilistic viewpoint. 
For a given domain 𝐃𝐃, a Task is defined by two components: 
 𝐓𝐓 = {𝒚𝒚,𝑷𝑷(𝒀𝒀|𝚾𝚾)} = {𝒚𝒚,𝛈𝛈}   𝒀𝒀 = {𝒚𝒚𝟏𝟏, … … …𝒚𝒚𝒏𝒏},𝒚𝒚𝒊𝒊  ∈ 𝒚𝒚 
A label space: 𝒚𝒚 
A predictive function η learned from feature vector/label pairs 
(𝒙𝒙𝒊𝒊, 𝒚𝒚𝒊𝒊), 𝑥𝑥𝑖𝑖 ∈ 𝑥𝑥, 𝒚𝒚𝒊𝒊  ∈ 𝒚𝒚 
for each feature vector in the domain, n predicts its 
corresponding label: η (𝒙𝒙𝒊𝒊) = 𝒚𝒚𝒊𝒊 
Hence,  
Given a source domain 𝑫𝑫𝑺𝑺, a corresponding source task 𝑻𝑻𝑺𝑺 as 
well as a target domain 𝑫𝑫𝑻𝑻 and a target task 𝑻𝑻𝑻𝑻, the objective 
of transfer learning now is to enable us to learn the target 
conditional probability distribution P(𝒀𝒀𝑻𝑻| 𝑿𝑿𝑻𝑻)  in 𝑫𝑫𝑻𝑻  with the 
information gained from 𝑫𝑫𝑺𝑺 and 𝑻𝑻𝑺𝑺 where 𝑫𝑫𝑺𝑺 ≠ 𝑫𝑫𝑻𝑻 OR 𝑻𝑻𝑺𝑺 ≠
𝑻𝑻𝑻𝑻. 

The implementation of deep transfer learning necessitates the 
use of pre-trained models. Hence, the DenseNet (DenseNet201) 
was selected as the pre-trained model due to its characteristics. 

DenseNet is much esteemed in the paradigm of image 
classification, image segmentation, and image super-resolution 
[36], resulting in optimal performances. Its implementation has 
been attributed to memory efficiency, computational efficiency, 
and feature reusability capabilities [25]. Its utilisation also 
supports the mitigation of vanishing gradients' concerns and 
strengthens feature propagation [36]. Furthermore, its essential 
property of feature reusability ensures memory and 
computational efficiency.  

For an adequate implementation of a pre-trained model, the 
selected execution method plays a significant role. Under the 
scope of deep transfer learning, four (4) principal execution 
approaches [37] are shown in Figure 6. Before selecting any of 
the principles, two (2) parameters are essential and help choose 
the datasets' size and similarity to the pre-trained model 
datasets. However, a dataset is tagged small and large when the 
available datasets are less and more than 1,000, respectively 
[34]. Also, a dataset is considered similar if the available dataset 
is comparable to the pre-trained datasets. For instance, a pre-
trained model used to classify blood cells is identical when used 
to classify cancerous cells. On the other hand, a dataset is 
dissimilar if the available dataset is not like the pre-trained 
datasets. For instance, a pre-trained model used for classifying 
flowers is distinct when used to classify automobiles. 

 
Figure 6: (a) Size-Similarity Matrix and (b) Decision Map For Fine-Tuning Pre-Trained Models  

Since the study has over 1,000 available datasets that are not 
similar to that of the pre-trained model, the first quadrant was 
implemented and involved training the entire model (i.e., 
convolutional base and classifier) as depicted by Figure 6(b). 

D. Implementation of Deep Transfer Learning Using 
DenseNet201 

The execution of pre-trained models is generally hinged on 
the principles of Convolution Neural Networks (CNN). Its 

implementation architecture is stratified into two essential 
divisions [37], encompassing the convolutional base and 
classifier, as showcased by Figure 7. The convolutional base is 
stacked with image filters that aid in feature extraction, while 
the classifier is used for making predictions based on the kind 
of features extracted.  



JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021 

 
 

100 
 

 
Figure 7: The Architecture Of Proposed Model Based Convolutional Neural Network 

As indicated by Figure 7, the convolutional based 
comprises two (2) primary partitions, involving the lower and 
higher layers. In deep transfer learning, the learning process is 
automatically realised hierarchically, starting and ending from 
lower to higher layers. The lower layer computes general 
features and could be reused for different problem domains. In 

contrast, the higher layer computes specialised features, 
dependent on the type of datasets. The specialised features we 
used for developing our model is the local fingerprint features 
(textural features). However, despite having lower layers and 
higher layers, a group of transitional layers (hidden layers) is 
sandwiched between them, as shown in Figure 8.  

 
Figure 8: Deep Transfer Learning Process 

The purpose of these convolutional layers is to derive 
a feature map (i.e., a trainable classifier), as shown in Figure 9. 
Traditionally, a low number of filters are used at low-level for 
feature detection. However, as the progressive learning process 

goes deeper into the CNN, additional filters are engaged to 
detect and extract high-level features. Feature maps are birth by 
scanning the input dataset with filters of varying sizes coupled 
with matrix computations. 
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Figure 9: Feature Extraction in Deep Transfer Learning Process 

The activation function adopted for the fingerprint 
classification model was the Rectified Linear Unit (ReLu) 
function, as shown in Figure 10. ReLu activation function was 
selected because of its efficiency when implemented for binary 
classification. The evaluation of the ReLu activation function 
has a max(0, z).   

 
Figure 10: Rectified Linear Unit (ReLu) function 

In summary, Figure 11 shows the deep transfer learning process 
executed for the study. The initial step involved obtaining 
datasets, which were then cleaned (pre-processed) to suit the 
network's requirements. The pre-processed datasets were after 
divided into the train (validation inclusive) and test split. The 
model's training was initiated using the available training 
datasets with some fine-tuning of some optimisation parameters 
(hyper-parameters). After a satisfying training experience, the 
model was tested on a set of test datasets. Finally, the holdout 
dataset was used to evaluate the model's functional 
performance. It should be noted that training and validation 
were implemented simultaneously. 

 
Figure 11: Proposed Model Development Process 

E. Dataset 
The proposed model's efficacy is evaluated on four public 

datasets encompassing the LivDet Competition dataset 2009, 

2011, 2013, and 2015. LivDet competition is held every two 
years since 2009 and served as a platform for researchers to 
showcase their methodologies of averting fingerprint 
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presentation attacks. Datasets contained fake fingerprints 
fabricated from cooperative and non-cooperative methods. 
Datasets obtained from LivDet2009 consist of four distinct 
datasets involving real fingerprints and spoof fingerprints made 
from silicone, playdoh, and gelatin. The LivDet2009 [38] 
datasets were captured with three fingerprint sensing devices 
encompassing Biometrika, CrossMatch, and Identix. 
LivDet2011 [39] consists of real fingerprints and fake 
fingerprints made from spoof materials such as Ecoflex, 
Gelatin, Latex, Silgum, Woodglue, and Playdoh. The resultant 
LivDet2011 datasets involved four fingerprint readers: 
Biometrika, Digital, Ital, and Sagem. The LivDet2013 [40] used 

the Biometrika and Ital-data reader to obtain six datasets, 
including real fingerprints and fake fingerprints fabricated from 
spoof materials ecoflex, gelatine, latex, modasil, and wood 
glue. LivDet2015 [41] utilised three fingerprint readers: 
Biometrika, Digital Persona, and GreenBit. The LivDet2015 
consisted of real fingerprints and ten fake fingerprints 
encompassing ecoflex, gelatine, OOMOO, liquid-ecoflex, 
RTV, woodglue, body-double, and latex. The various salient 
properties of the datasets obtained from the LivDet 2009, 2011, 
2013, and 2015 are summarised in TABLE 2. 

.  

 
TABLE II 

DETAILS OF LIVDET COMPETITION DATASETS UTILISED IN THE STUDY (THE TRAINING SETS WERE RESCALED TO 224 X 224, AND TWELVE 
(12) FINGERPRINT SPOOF MATERIALS WERE OBTAINED AND INCLUDED IN THE STUDY) 

 
Dataset Sensor Image Size Fingerprint 

Acquisition 
Approach 

Real 
Fingerprints 
Available 

Spoof Material 

LivDet2009 Biometrika* 
CrossMatch* 

Identix* 

312 x 372 
640 x 480 
720 x 720 

 
Cooperative 

 
Yes 

Silicone, Gelatin, Playdoh 

LivDet2011 Biometrika* 
Digital Persona* 

Ital_Data* 
Sagem* 

312 x 372 
355 x 391 
640 x 480 
352 x 384 

 
Cooperative 

 
Yes 

Ecoflex, Gelatin, Latex, 
Silgum, WoodGlue, 

Playdoh 

LivDet2013 Biometrika* 
Ital_Data* 

312 x 372 
640 x 480 

Non-Cooperative Yes Ecoflex, Gelatine, Latex, 
Modasil, WoodGlue 

LivDet2015 Biometrika* 
Digital Persona* 

GreenBit* 
CrossMatch 

1000 x 1000 
252 x 324 
500 x 500 
640 x 480 

 
Cooperative 

Yes Ecoflex, Gelatine, Latex, 
Liquid Ecoflex, RTV, 

WoodGlue, BodyDouble, 
Play-doh, OOMOO. 

The study employed a stochastic gradient descent approach 
[36] in training the models with a batch size of 64 samples at a 
learning rate of 5e−5 (0.00001). Due to the selected batch size, 
750 iterations per epoch was executed for 50 epochs. 
Approximately 8 hours were spent on the model's training and 
validation, which involved 54,000 fingerprint samples. 
KAGGLE API was used, and its cloud-based resources were 
harnessed, involving its Graphical Processing Unit (GPU) and 
Central Processing Unit (CPU) of 16GB and 13GB, 
respectively.    

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
Five sets of evaluation parameters were utilised to probe the 

efficacy of the proposed model: these include training accuracy, 
validation accuracy, training loss, validation loss, and testing 
accuracy. Training and validation accuracies were parameters 
used to determine the accuracy level across the entire epoch 
during the model's training and validation. On the other hand, 
the training and validation losses were used for measuring the 
extent to which the model deviates from an optimal accuracy 
level across the various epochs. The testing accuracy was used 
to determine the model's general accuracy, utilising a confusion 
matrix to evaluate the proposed model's classification 
efficiency. 

The training and validation processes were executed 
simultaneously across all the epochs, with the validation 
accuracy the most critical parameter. The validation dataset 
serves as the pre-test dataset that computes the model's 
efficiency during the training process. The resulting validation 
accuracy is an essential parameter because it is used to 
determine how effective each trained epoch performs. Also, 
validation accuracy adequately renders the model's robustness 
across the epochs. As a result, a checkpoint parameter 
predefined as "save-the-best-model-to-sign-classifier.h5" was 
set to save the epoch that records the best validation accuracy 
during the progressive training process. The best validation 
accuracy was recorded at "epoch 38". 

At the best epoch, the model recorded a training accuracy of 
0.9998 and validation accuracy of 0.9983, as shown in Figure 
12. As demonstrated by Figure 13, training and validation 
losses of 9.0537𝑒𝑒−4 and 0.0085 were recorded, respectively. 
Experimental results showcased that the model had relatively 
low losses, which resulted in state-of-the-art training and 
validation accuracies. 
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Figure 12: Training and Validation Accuracy of Model 

 

 
Figure 13: Training and Validation Accuracy of Model 

As illustrated by the confusion matrix in Figure 14, the 
model successfully classified 2,992 real fingerprints and 2,993 
fake fingerprints. Hence, only misclassifying 8 real fingerprints 
and 7 fake fingerprint samples. 

 
The model's sensitivity (True Positive Rate (TPR)) and 

specificity (true negative rate (TNR)) in classifying real 
fingerprints and spoof fingerprints, respectively, were 
evaluated. These salient parameters were assessed using 
various variables: True-positive - test results that are classified 
as real fingerprints and are genuinely real fingerprints; False-
positive - test results that are classified as real fingerprints but 
are fake fingerprints; True negative - test results that are fake 
fingerprints and genuinely fake fingerprints; and False-negative 
- test results that are classified as fake fingerprints but are real 
fingerprints. 

 
True positives (TP) = 2992 
False positive (FP) = 7 
True negatives (TN) = 2993 
False negative (FN) = 8 

 

 
Figure 14: Confusion Matrix Evaluation of Proposed Model 

on Test Dataset 

The following equation is used to calculate the model 
sensitivity and specificity: 
 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑺𝑺𝑴𝑴𝒏𝒏𝑺𝑺𝒊𝒊𝑺𝑺𝒊𝒊𝑺𝑺𝒊𝒊𝑺𝑺𝒚𝒚 =
𝑻𝑻𝑷𝑷

𝑻𝑻𝑷𝑷 + 𝑭𝑭𝑭𝑭
  𝐱𝐱 𝟏𝟏𝟏𝟏𝟏𝟏% … … … … … . (𝟏𝟏) 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑺𝑺𝑺𝑺𝑴𝑴𝑺𝑺𝒊𝒊𝑺𝑺𝒊𝒊𝑺𝑺𝒊𝒊𝑺𝑺𝒚𝒚 =
𝑻𝑻𝑭𝑭

𝑻𝑻𝑭𝑭 + 𝑭𝑭𝑷𝑷
 𝐱𝐱 𝟏𝟏𝟏𝟏𝟏𝟏% … … … … … . . (𝟐𝟐) 

 
The proposed model had a resultant sensitivity of 99.73% and 
a specificity of 99.77%, indicating the model's robustness. 

To further validate the model's robustness, a group of 
fingerprint samples tagged as the holdout dataset, not used for 
the training, validation, or testing process, was introduced to 
verify its practical robustness. The model had a 100% 
classification accuracy on the holdout datasets, effectively 
classifying all fingerprint samples as depicted by Figure 15.  

V. CONCLUSION 
One of the severe threats battled by Automatic Fingerprint 

Identification Systems (AFIS) is the issue of presentation 
attack, which involves the malicious fabrication of synthetic 
fingerprints to circumvent AFIS. However, various approaches 
have been introduced to help remedy the threat of presentation 
attacks on AFIS through diverse hardware-based and software-
based approaches. The hardware-based methods primarily deal 
with integrating specialised sensors to capture salient live 
human traits such as pulses, blood pressure, odour, etc. 
Nevertheless, these hardware-based approaches are easily 
bypassed with fabricated thin-layered spoofs. On the other 
hand, the software-based method eradicates additional sensors 
and instead engages in fingerprint feature extraction and 
cognitive learning schemes.  
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Figure 15: Proposed Model Classification of Holdout Dataset 

Several software-based approaches have been posited to 
counter the issue of fingerprint presentation attacks. Most of 
these methods involve manual selection and extraction of 
handcrafted features, resulting in shallow features for spoof 
discrimination. Also, the CNN-based approaches, involving 
pre-trained-models such as VGGNet, AlexNet, MobileNet, 
Xception, ResNet etc., [7],[9]–[12], have some limitations on 
memory efficiency, computational efficiency, and feature 
reusability [14]. Hence, motivated by these concerns, we 
developed a spoof fingerprint detection model using a deep 
transfer learning approach, utilising the DenseNet201 network 
as a pre-trained model to discriminate against spoof 
fingerprints. Experiments were carried out on the LivDet 
competition standard database, encompassing the combination 
of datasets from LivDet 2009, 2011, 2013, and 2015, resulting 
in the acquisition of real fingerprints and fake fingerprints 
fabricated from twelve (12) different spoofing materials.  

Experimental results  manifested an adequate training 
accuracy of 0.9998 with training loss of 9.0537𝑒𝑒−4 at the best 
epoch, indicating a state-of-the-art training performance. The 
validation accuracy that happens to be the principal parameter 
of interest for selecting the best epoch recorded a validation 
accuracy of 0.9983 and a validation loss of 0.0085. 
Cumulatively, 60,000 datasets were utilised to develop the 
model, with a dataset split ratio of 8:1:1 for training, validation 
and testing, respectively. The developed model showcased an 
average classification accuracy of 99.8%, indicating state-of-
the-art classification accuracy. The model manifested a 
sensitivity of  99.73% and specificity of 99.77%. Further test on 
the holdout dataset (i.e., independent of training, validation, and 
test datasets) validated the model's robustness, with the model 
effectively classifying all holdout dataset accurately.  
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