
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH

80

Abstract— The model and design of the IP core of Serial

Peripheral Interface (SPI) with Advanced Peripheral Bus (APB)
interfacing is presented in this paper. SPI is known as a kind of
serial protocol for serial communication bus developed by
Motorola and has become de facto standard. There is possibility
for a system to have more than one slaves for the integrated circuit,
however the master can only be one at any given time. Hence, in
this work, the SPI was modelled by Verilog code and it was
simulated and synthesized using ModelSim and Quartus Prime
Lite Edition 16.0 for earlier stage of design. While Synopsys Tools
i.e. Design Compiler was used as the primary synthesis for the
design. The SPI interface was designed to send or receive data
from a single slave and efficient APB-SPI controller with flexible
data width and frequency is proven for maximum frequency of 16
MHz. The modes of SPI also play its role in this work where this
protocol can run through four modes that corresponds to four
possible clocking configurations. The results showed that the core
of SPI was successfully modelled for mode 0, 1, 2 and 3. In additon,
the modes were simulated with maximum operating frequency of
16 MHz and flexibility in all four clocking modes. The ASIC
design of this work consumed 27750 μm2 and 47.12μW using
Silterra 0.18μm CMOS process.

Index Terms— SPI, IP, APB-SPI controller, single slave.

I. INTRODUCTION
HERE are many types of protocols in communication and
it is very clear that these protocols are very important and

each of the protocols is different and has its own methods. The
commonly used and popular protocols is Serial Peripheral
interface (SPI), Inter-Integrated Circuit (I2C) and wireless for
serial communications. In 1979, SPI was introduced and was
defined as external microcontroller bus which connected the
four wires with microcontroller peripherals. Meanwhile in
1982, the I2C was developed. The purpose was to provide a
connection between peripheral chips in television set to a CPU
in an easy way. For I2C protocols, all the peripherals need only
two wires to be connected to a microcontroller. SPI is a serial
communication bus developed by Motorola. It is a full-duplex

protocol that functions on a master-slave paradigm that is
ideally suited to data stream application [1].
 Communication between the two processors is handled via
the serial peripheral interface (SPI). Every SPI system consists
of one master and one or more slaves, where a master is defined
as the microcomputer that provides the SPI clock, and a slave
is any integrated circuit (IC) that receives the SPI clock from
the master [2]. It is possible to have a system where more than
one IC can be master, but there can only be one master at any
given time. In this issue, SPI is preferable for high-speed and
it is full duplex. This is because SPI can achieve higher data
rates which are limited to 400KHz and compatible interfaces
often range into 10 MHz but normally it serves several slaves.
Furthermore, SPI does not define any speed limit, the
implementation often performs over 10Mb/s [3-4]. Though,
I2C is also serial interface and it can have multi-master, but the
speed is limited to 1Mb/s in fast mode and 3.4Mb/s in high-
speed mode.
 Hence, the motivation of this study is to model the SPI unit
using HDL. Although there are many literatures that describe
the design of SPI using HDL, their designs are aimed at
different application and the communication protocol involved
is between the SPI master and slave only [3-5]. Since Advanced
Microcontroller Bus Architecture (AMBA) APB Bus Interface
is widely used in any processors [6], this is another motivation
for this work which is to develop SPI model which can interface
with AMBA-APB Bus. Furthermore, the model system can
improve the effectiveness of transferring data accordingly.
Also, the model is aimed to transmit data and receive data with
four types of modes that corresponds to four possible clocking
configurations in SPI itself. Therefore, the SPI with an
efficient controller can allow only the master to operate with
flexible data width and multi selective frequencies and clocking
configurations due to the applications. The model and design
of the SPI unit can be utilized to interface with the system main
data bus such as Advanced Microcontroller Bus Architecture
(AMBA) APB Bus Interface Core and it is challenging to
control the SPI unit through the AMBA Bus. Although there
are designs for this interface, the available works only focus on
one mode and there is no available paper that describes the
implementation in ASIC [7-10]. Hence, this paper shows the
methods and results of the design which would be beneficial to
IC design researchers.

Design and Simulation of Serial Peripheral
Interface Core with APB Interfacing

 Muhammad Hafeez Sabparie, Emillia Noorsal, Suhana Sulaiman, and Azilah Saparon

T

 This manuscript is submitted on 26 February 2021 and accepted on 24 June
2021. The work is partly the MSc tesis of Muhammad Hafeez Sabparie.
Muhammad Hafeez Sabparie, Suhana Sulaiman and Azilah Saparon are with
the School of Electrical Engineering, College of Engineering, Universiti
Teknologi MARA, 40450 Shah Alam, Selangor (email:
muhd27hafeez@gmail.com, suhana832@uitm.edu.my,
azilah574@uitm.edu.my)
 Emilia Noorsal is with School of Electrical Engineering, Universiti
Teknologi MARA, Penang, Malaysia (emilia.noorsal@uitm.edu.my).

1985-5389/© 2021 The Authors. Published by UiTM Press. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org
/licenses/by-nc-nd/4.0/).

doi.org/10.24191/jeesr.v19i1.011

mailto:muhd27hafeez@gmail.com
mailto:suhana832@uitm.edu.my
mailto:azilah574@uitm.edu.my

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021

81

II. RESEARCH METHODLOGY
 This section describes the SPI design flow and details the
process based on the specification and functionality of each
sub-modules. There are two parts of explanation, i.e. Design
Specification and Serial Peripheral Interface (SPI) Architecture,
respectively.
 Fig. 1 shows the overall process flow for designing IP core
of SPI with APB interfacing design. Initially, the SPI was
remodeled and simulated with multi slave using several
simulation solutions such as ModelSim, Synopsys VCS and
Quartus Lite 16 for the flexibility of data width of SPI. Further
investigation on flexibility of data width of SPI is conducted
thru data analysis to ensure the model fulfil the design
specification successfully. Once, all design specifications are
fulfilled, the task is continued for the layout and post simulation
and synthesizing using Design Compiler and Astro.

Fig. 1. Overall Process flow for the design of IP Core of Serial
Peripheral Interface (SPI) with AMBA APB Interface

A. Design Specification
In this work, the design specification was aimed to design the
SPI with an efficient controller for the master to operate with
flexible data-width and multi selective frequencies so that it can
fulfil many applications such as Nordic wireless
microcontroller unit.
Hence to fulfill the application, the design of SPI must satisfy
certain constraint such as its maximum clock frequency i.e.
16Mhz and other constraints such as:

i. Full duplex, synchronous, 8-bit serial data transfer
ii. Master or slave mode
iii. Fully Synchronous design with one clock domain
iv. Simple interface allows easy connection to
microcontrollers (IO port)
v. APB interface

B. Modelling and Simulation of Serial Peripheral Interface
(SPI)

This section focuses on the system architecture design of the
SPI protocol. There are three type of functional modules: clock
generator, serial interface or top module, and the wishbone
interface.

Fig. 1: Internal design sub-modules of top module SPI []

Finally, the top module design is to ensure the sub module of

the SPI working smoothly and accordingly as planned. With all
these have been done, a test bench was design to act as input or
in other word to be act as AMBA bus data transmission. This
test bench was design using Verilog language to check on the
input data transmission of the SPI and the output data that carry
out from the SPI to the Slave.

Fig. 2. Block diagram of SPI top module

Fig. 2 refers to the block diagram of SPI top module.The top
module is divided into 4 main modules: SPI control register
module, SPI clock divider module, SPI clock logic module, SPI
status Register and SPI master controller module. In addition,
each one of the modules are designed using Verilog HDL [11].

The clock generation design module is to ensure the timing
reliability of the SPI protocol design. This is because, in SPI
protocol design there will be no response mechanism. With this
clock generation design module, the SPI can generate reliable
serial clock of transmission.

The interface module design of the SPI is essential because
it has to follow the SPI protocol which is the data to be
transferred from parallel data in into serially in and serially out
data to be transferred parallel out if needed. It can bring benefit
to the design of the SPI such as increasing the overall rate of
data transmission.

Table 1 displays the input pins of the top SPI module as
well as the pins respective function.

Remodeling SPI with multislave

Simulating and verifying SPI
using MODELSIM,Synopsys

VCS and Quartus Pro Lite

Modelling SPI with new
specifications

Doing layout, design routing and
verification using Synopsys
Design Compiler and Astro.

SPI
Control
Register

Status
Register

Clock
Logic

Clock
Divider

SPI
master
with

controller

To/from
 A

PB interfacing

TDAT [7:0]
DATA [7:0]

MISO
START
RESET
CLOCK

TOP MODULE SPI
WITH CONTROLLER

RDAT [7:0]
SCKS
MOSI
SS

Sabparie et al.: Design and Simulation of Serial Peripheral Interface Core with APB Interfacing

82

TABLE I
INPUT PINS OF TOP SPI MODULE

Pins (Input
Top SPI) Function

CLOCK
The clock input defines the bit-rate of the
serial communication (16MHz max
frequency)

RESET Resets the SPI state machine to the idle
state

START Start data transmission (e.g.: start =1)

MISO The MISO input carries the master input

Tdat [7:0] Data transmitted by the APB

Data [7:0] Master input data

As depicted in Table 2, there are four output pins to be

transferred to slave and each pin has its own functionality.

TABLE II
OUTPUT PINS OF TOP SPI MODULE

Pins (Output
Top SPI) Function

MOSI The clock input defines the bit-rate of the serial
communication (16MHz max frequency)

SCKS Resets the SPI state machine to the idle state

RDAT [7:0] Start data transmission (e.g.: start =1)

SS The miso input carries the master input

Fig. 3: State diagram of SPI controller

Fig. 3 shows the state diagram of the SPI controller. The

Finite State Machine (FSM) of the controller determines the
value of the control signal. These signals are initialized at IDLE
state whenever the Reset signal is asserted. Signal shift is set to
logic 1 while signal clr and donem are set to logic 0. The clr
signal clears all registers. At SEND state, the shift and clr are
still maintained at 1 and 0, respectively. This is to allow the
master to transmit the data and save them in the register, rdat.
When all data have been transmitted, signal donem is asserted
HIGH. Then, the system goes to state FINISH and stop shifting
the data and clear the counter register, nbit. Lastly, the status
signals are is stored in the status register.

The status register holds status flags, and these values are
notification from the SPI master that certain process is still in
progress or completed. Table 3 describes the function and
number of bits used for the status signal.

TABLE III
FUNCTION OF STATUS REGISTER

Bit(s) Pin Name

Function

7
enable

Indicates that Core SPI is enabled. If this bit is set

to logic 1, Core SPI is currently enabled

6:4 Unused unused

3

busy

Indicates that the Master is busy. If this bit is at logic

1, the Core SPI Master is currently transferring data.

This status bit is used to check if the SPI Master is

busy before disabling it.

2

tx_register_empty

New data for transmission can be written to the

Transmit Data Register when this bit is at logic 1

1

rx_data_ready

When this bit is at logic 1, the RX Data Register must

be read before the next character is received

0

error

If this bit is at logic 1, it indicates that a character has

been received before the previous character has been

read from the RX Data Register.

As mentioned previously, there are three particular tools are

used for the simulation process: ModelSim, VCS and Quartus
Lite 16. ModelSim and VCS are used to collect data or the
waveform of the simulation. Both tools are used to see the
simulation results of the SPI where the Quartus Lite 16 is used
to synthesize and validate the condition of the SPI protocol. For
the simulation process, there are few simulations to observe the
maximum frequency of the SPI, the input and output of the SPI,
and 4 different modes of SPI.

Table 4 presents the SPI modes definitions for the simulation
waveform. As depicted in Table 4, the manipulative variable is
the clock polarity and clock phase. The SPI interface defines
no protocol for data exchange overhead limitation and will
allow high speed data to stream. Clock polarity (CPOL) and
clock phase (CPHA) will be specified as ‘0’ and ‘1’ to form
four different and unique modes that is to provide flexibility to
communicate between master and slave. The Mode 0 is the
most common mode in SPI bus Slave communication.

TABLE IV

SPI MODES DEFINITIONS

MODE Clock Polarity

(CPOL)

Clock Phase (CPHA)

0 0 0

1 0 1

2 1 0

3 1 1

To verify the functionality of the SPI, a Verilog model of SPI

testbench is developed. The testbench forces stimulus into the
Device Under Test (DUT) i.e. SPI Core and monitoring the
output of the SPI and the content of registers. Fig. 4 shows the

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021

83

snippet of the stimulus in the testbench.

Fig. 4: Stimulus for SPI input

The control register holds the 8-bit data sent from APB which
the data represents control signals to SPI master. The ctr_data
represents interrupt, mode of SPI, data order, clock phase, clock
polarity, clock divider and in this case, the interrupt is set to 0
which it disables the interrupt signal. The mode of SPI is in
master mode and order of sending the data is MSB instead of
LSB. The transmission mode is set to Mode 0 which the clock
polarity (CPOL) and clock phase (CPHA) are set to ‘0’ and then
a data of 8’b10101010 is pushed in by the test bench to observe
the input and output for this mode. This part of the code is
changed to test for other modes which are Mode 1 : CPOL is
‘0’ and CPHA is ‘1’, Mode 2 : CPOL is ‘1’ and CPHA is ‘0’
and Mode 3 : CPOL is ‘1’ and CPHA is ‘1’

When all the modes that have been tested, the SPI Verilog
model is processed using Synopsys tools for the ASIC design.
Synopsys Design Compiler (DC) and Astro analysis are
performed for the layout and post simulation as well as
synthesizing.

III. RESULTS & DISCUSSION

This section exhibits the findings of Register Transfer Level
(RTL) Netlist Viewer Block Diagram of SPI using Quartus
Prime 16.0, Design Compiler (DC) Analysis for SPI and
Simulation Results using ModelSim and Silterra Astro.

A. Simultation Results for Each Modes of SPI using MoldelSim
and VCS

Referring to work in [1], the simulation and synthesized SPI
design, the RTL Block diagram and also signals for mode 0 has
been presented. Hence, the following is the subsequent results
of the timing waveform for MODE1, 2, 3 respectively.

1) Simulation Result of Timing Waveform for MODE 1

Fig. 5 displays the result of timing waveform for SPI for
MODE 1. In this mode, clock polarity is 0. This indicates that
the idle state of the clock is low. However, the clock phase of
this mode is 1. This implies that the data for this mode was
latched and sampled on the falling edge/ negative edge of the
scks (clock signals) and shifted on the positive edge/ rising edge
of the scks (clock signals). In short, MODE 1 was formed with
a clock polarity that was non-inverted (i.e., the clock is at logic
low when slave select transitions to logic low).

Fig. 5: Timing waveform for SPI of MODE 1

2) Simulation Result of Timing Waveform for MODE 2

Fig. 6 shows the simulation result of timing waveform for SPI
of MODE 2. In this mode, clock polarity is 1. This indicates
that the idle state of the clock signal is high and the clock phase
of is 0. This deduces that the data for this mode was latched
and sampled on the falling edge/ negative edge of the scks
(clock signals) and shifted on the positive edge/rising edge of
the scks (clock signals). Briefly, Mode 2 was formed with a
clock polarity that was inverted (i.e., the clock is at logic high
when slave select transitions to logic low).

Fig. 6: Timing waveform for SPI of MODE 2

3) Simulation Result of Timing Waveform for MODE 3

Simulation result of timing waveform for SPI of MODE 3 is
presented in Fig. 7. In this mode, clock polarity is 1 which
indicates that the idle state of the clock signal is high. In
addition, the clock phase of this mode is 1. The result suggests
that the data for this mode was latched and sampled on the rising
edge/ positive edge of the scks (clock signals) and shifted on the
negative edge/falling edge of the scks (clock signals). In short,
MODE 3 was formed with a clock polarity that was inverted
(i.e., the clock is at logic high when slave select transitions to
logic low).

%Enabling SPI and assertions
start = 1; miso = 1;
ctr_data = 8'b0_0_1_00_001;
tdat = 8'b10101010;

Sabparie et al.: Design and Simulation of Serial Peripheral Interface Core with APB Interfacing

84

Fig. 7: Timing waveform for SPI of MODE 3

In summary, these results show that the clock polarity and clock
phase can be set and varied according to the applications
determined for the SPI. In this study, this is accomplished in the
master control unit where the master controller will determine
which mode the SPI will make use of. Prior studies that have
noted the importance of other SPI will lock on one mode and
the mode was MODE 0. What is interesting about our SPI is the
design SPI able to be flexible by using all four modes that has
been set up in the master. These differences can be explained
whereby the idle state was defined as the period when slave
select (SS) was high and transitioning at low at the start of their
transmission and when slave select SS is low and transitioning
to high at the end of the transmission. As shown in Fig. 7, the
clock phase (CPHA) bit select the clock phase. The rising or
falling clock edge was used to sample and / or shift the data
depending on the CPHA bit. The master must select both clock
polarity and clock phase as per requirement of the slave. This
combination of findings provides some support for the SPI to
provide all four modes for the slave that intend to relate to it
depending on the CPOL and CPHA bit selection in the master.

B. Register Transfer Level (RTL) Netlist Viewer Block
Diagram of SPI using Quartus Prime 16.0

Fig. 8 exhibits the overall RTL master block diagram for the
SPI.

Fig. 8 : Full Master block diagram for SPI from RTL NETLIST
VIEWER

As shown in Fig. 8, there are four main block diagram that
was constructed in the SPI. The blocks are control register,
clock divider, master control unit and status register. The

description for each block diagrams has been discussed in [12].
 To summarize, the SPI control register module was designed
to function like a CPU. A CPU can Read from and Write to
the 8-bit. Where Data [7:0] is Master input data to the Control
Register module. The outputs of the control register module
will be the inputs of the clock divider modules.
 The clock divider module will provide the clock for the
master controller. The clock divider can define the data transfer
rate and it can select the serial data clock frequency of the sck.
In general, period T is defined as inverse of frequency f i.e, T=
1/f. In this design, the clock is divided when the master is
operating based on the 3 bits selection of divider. This will
select the serial data clock frequency of the scks signal which
will also define the data transfer rate. Table 5 illustrates the
division frequency for chosen selection bits.

TABLE V

SELECTION OF FREQUENCY DETERMINED BY 3-BIT CLOCK DIVIDER

[2:0] SCK Frequency [2:0] SCK Frequency
000: fPCLK ÷ 2 100: fPCLK ÷ 32
001: fPCLK ÷ 4 101: fPCLK ÷ 64
010: fPCLK ÷ 8 110: fPCLK ÷ 128
011: fPCLK ÷ 16 111: fPCLK ÷ 256

 Full Master block diagram for SPI is Master control unit as
shown in Fig. 8. Previously, clock input defined the bit rate
that came from the clock divider of the serial communication.
In this module, MISO is the master in and slave out pin. This
pin is used to receive data when it is configured as Slave and
transmit data of the SPI module when it is configured as a
Master. Reset act similarly as the other module which will reset
the SPI state machine to idle state. While Tdat came from the
data transmit from the APB and finally the start is an indication
to start running with the program. As for the output, MOSI pin
is used to receive data when it is configured as Master and
transmit data out of the SPI module when it is configured as a
Slave. While Scks is a pin for the output of the clock with either
SPI receive data or transfer data clock in case of Slave. SS is a
slave select that is used to enable the slave. Lastly, Rdat is an
8-bit data that will be transferred out from the master.

 The final module of Full Master block diagram for SPI is
status register as depicted in Fig. 8. The description for the
pins for the output of Top SPI design is referred in [12]. The
function of status register is to hold signal flags and send to the
APB by indicating what is being executed by the SPI.
 Overall, each modules of the RTL constructed in the SPI
provide different functions toward the SPI. The differences
between modules have been highlighted discretely to show that
all modules have related to one another after being synthesized.
In addition, the block diagram shows that all modules required
the input that applicable and the master controller can produce
four output to the slave and one to check the status of the serial
peripheral interface, which is MOSI, SS, SCKS, Rdat [7:0], and
SR [7:0].

C. Results of Design Compiler (DC) Analysis for SPI
 The analysis from Design Compiler mainly focusing on the
synthesis part of SPI. The design compiler (DC) analysis
results emphasizing the block diagram for the SPI which

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021

85

include the top level of the SPI. Also, the result produced report
scripts such as report area, report constraints, report power,
report timing maximum and minimum of the SPI.
1) Block Diagram Of SPI Using DC Analysis
 Fig. 9 (a) and 9 (b) display the TOP module of the SPI and
block diagram of SPI after the synthesis process respectively.
The TOP module of the SPI is the similar TOP module attained
from Quartus Prime 16.0. This implies that the SPI is correctly
constructed with the Verilog code. Fig. 9 (b) represents the
details of the TOP SPI after the Synthesis Process from Design
Compiler (DC) Analysis. All inputs and output are
indispensable as expected in the design. In this simulation, the
process was essential to ascertain there is no error in Synopsys
Astro analysis where all the floor planning, placement and
routing is expected of this work. With the DC, the SPI also
undergoes the process of optimization and compilation after
adding the constraints to design. Prior to the addition of
constraints, the block diagram of the SPI from the design
compiler has been monitored cautiously to avoid any leakages
and any error in the design such as unconnected wiring between
the modules.
 By comparing the block diagram with the block diagram in
Quartus Prime 16.0, the finding revealed that there is no error
in the synthesizing of the SPI. The result deduces that there is
no leakage on any modules and there is no unconnected wire.
To sum, when both block diagram produce similar actual
diagram; this signify that the design should be good enough to
proceed to the next process of the research.

Fig. 9 (a): TOP module of SPI

Fig. 9 (b): Block Diagram of SPI after Synthesis Process from Design

Compiler (DC) Analysis

i. Report of Constraint for DC Analysis of SPI
 As depicted in Table 6 is the constraint result from the DC
analysis. The max_area result shows that the area was
27750.93 (VIOLATED) was violated. This result does not
imply an error in the design. This is because the set up for the
constraints value of the area was written as 0. This indicates the
area for the design is 27750.93.

TABLE VI

REPORT OF CONSTRAINTS FOR THE SPI

Constraint Cost

multiport net 0.00 (MET)

max_transition 0.00 (MET)

max_capacitance 0.00 (MET)

max_delay/setup 0.00 (MET)

critical_range 0.00 (MET)

min_delay/hold 0.00 (MET)

max_area 27750.93 (VIOLATED)

Table 7 refers to the power for the SPI. The main purpose of
power report is that to show the cell internal power and the net
switching power. Both of those values will contribute to the
total dynamic power. The cell internal power will give out
42.5780 uW which is 90% of the total dynamic power where
the net switching power will give out 4.5494 uW which is 10%
of the total dynamic power that was going to be used.
Meanwhile cell leakage Power will give out 29.3476 nW. All
these values came from the setting that has been preset in Astro
software.

TABLE VII
REPORT OF POWER FOR THE SPI

Global Operating

Voltage

1.62

Power-specific unit
information:

Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units = 1mW
(derived from V,C,T units)
Leakage Power Units = 1pW

Cell Internal Power 42.5780 uW (90%)

Net Switching Power 4.5494 uW (10%)

Total Dynamic Power 47.1274 uW (100%)
Cell Leakage Power 29.3476 nW

As tabulated in Table 8, it is the Quality of Result (QoR) report
for the SPI. It shows the cell area and the design area of the
SPI. From this report, it also shows that there are no nets with
violation with the total number of nets which are 232 and
required area for the design is about 27,750 μm2.

Sabparie et al.: Design and Simulation of Serial Peripheral Interface Core with APB Interfacing

86

TABLE VIII
REPORT OF QOR FOR THE SPI

Timing Path Group 'clock' Levels of Logic: 3.00

Critical Path Length: 1.26
Critical Path Slack: 47.44
Critical Path Clk Period: 100.00
Total Negative Slack: 0.00
No. of Violating Paths: 0.00
Worst Hold Violation:
 0.00
Total Hold Violation: 0.00
No. of Hold Violations:
 0.00

 Cell Count Hierarchical Cell Count: 6
Hierarchical Port Count: 90
Leaf Cell Cou nt: 175
Buf/Inv Cell Count: 26
CT Buf/Inv Cell Count: 0

Area

Combinational Area:
1726.401624
Noncombinationa Area:
4277.750484
Net Area:
21746.774780

Cell Area: 6004.152109
Design Area: 27750.926889
Design Rules Total Number of Nets: 232

Nets With Violations: 0
Compile CPU Statistics

Resource Sharing:
0.04
Logic Optimization:
0.22
Mapping Optimization:
0.40

Overall Compile Time: 4.67

 Table 9 describes the report of timing for SPI. In this report
it also gives out the overall compilation time after gone thru the
optimization process for the logic and mapping optimization.
Overall, there are no violations and errors in the compilation
process.

TABLE IX

REPORT OF TIMING FOR SPI

Maximum timing data required time 99.50
data arrival time -52.06
slack (MET) 47.44

Minimum Timing data required time 50.49
data arrival time 50.55
slack (MET) 0.06

In summary, these reports met and run according to the
constraints that was set to the design. The files has been saved
and utilized to the next process - Astro for the floor planning,
placement and routing of the design.
big, but it also come with a benefit such as all parts was
connected, and it was easy for each part to be placed into the
floor plan of this SPI. As shown in figure above, the floor plan
includes the rectangular rings which are VDD and VSS. The
width and also height of the SPI was actually bigger than it
needs to be because to avoid any congestion occurs.
Fig. 11 shows the standard cells of the SPI was placed inside
the floor plan that was created for it and also routed accordingly.

V. CONCLUSION

To conclude, the design and simulation of the IP core of APB
Interfacing with SPI were successfully simulated and
synthesized using ModelSim, QuartusLite 16, design compiler
(DC analysis) and Silterra Astro. The findings revelaled that the
SPI interfacing to send or receive data from a single slave and
efficient APB-SPI controller with flexible data width and
frequency is established for maximum frequency of 16 MHz.
The modes of SPI have performed four modes that is mode one,
mode two, mode three and mode four. Also, the design and
simulation of the IP core of APB Interfacing with SPI were
completed for the gdsii file.

REFERENCES

[1] M. K. Saxena, E. Bhatnagar, N. Jaiswal, M. Parab, and S. N. Kulkarni,

“Reconfigurable architecture for IP peripherals,” Int. Conf. Signals
Electron. Syst. ICSES’10 - Conf. Proceeding, pp. 347–350, 2010.

[2] C. Mac Donald, E. Kilbride, and S. Philippe Alves, “Serial Peripheral
Interface Device Emulation Routine for the MC68340,” 2004.

[3] N. B. Mohd Noor and A. Saparon, “FPGA implementation of high speed
serial peripheral interface for motion controller,” ISIEA 2012 - 2012 IEEE
Symp. Ind. Electron. Appl., pp. 78–83, 2012.

[4] F. Naqvi, “Design and Implementation of Serial Peripheral Interface
Protocol Using Verilog HDL,” Int. J. Eng. Dev. Res., vol. 3, no. 3, pp. 1–
5, 2015.

[5] M.-C. Tuan, S.-L. Chen, Y.-K. Lai, C.-C. Chen, and H.-Y. Lee, “A 3-wire
SPI Protocol Chip Design with Application-Specific Integrated Circuit
(ASIC) and FPGA Verification,” Proc. 3rd World Congr. Electr. Eng.
Comput. Syst. Sci., vol. 1, pp. 1–7, 2017.

[6] C. D. Systems, “32-bit APB Serial Peripheral Interface (SPI) IP.”
[7] A. K. Oudjida, M. L. Berrandjia, A. Liacha, R. Tiar, K. Tahraoui, and Y.

N. Alhoumays, “Design and test of general-purpose SPI master/slave IPs
on OPB bus,” 2010 7th Int. Multi-Conference Syst. Signals Devices, SSD-
10, pp. 0–5, 2010.

[8] M. Sl and A. R. Aswatha, “SPI Slave Controller for AMBA Based SOC,”
vol. 3, no. 8, pp. 60–66, 2016.

[9] Z. Zhou, Z. Xie, X. Wang, and T. Wang, “Development of verification
envioronment for SPI master interface using SystemVerilog,” Int. Conf.
Signal Process. Proceedings, ICSP, vol. 3, pp. 2188–2192, 2012.

[10] S. Sharma and S. M. Sakthivel, “Design and verification of AMBA AXI3
protocol,” Lect. Notes Electr. Eng., vol. 469, no. 21, pp. 247–259, 2018.

[11] Muhammad Hafeez Sabparie et.al, "IP Core of Serial Peripheral Interface
(SPI) with AMBA APB Interface," 2017 National Symposium on VLSI
Technology and System on Chip, 12 - 14 Disember 2017, Penang,
Malaysia

[12] M. Hafeez and A. Saparon, “IP core of serial peripheral interface (SPI)
with AMBA APB interface,” ISCAIE 2019 - 2019 IEEE Symp. Comput.
Appl. Ind. Electron., no. Ic, pp. 55–59, 2019.

Muhammad Hafeez bin Sabparie
has completed her BSc in Electrical
Engineering from Universiti
Teknologi MARA Shah Alam,
Selangor andpursuing his MSc in
Electrical Engineering.

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 19 OCT 2021

87

Emilia Noorsal received her B.Eng.
(Hons) and MSc degrees from the
Universiti Sains Malaysia, Malaysa,
in 1998 and 2005, respectively. In
April 2014, she obtained her PhD in
Digital Stimulation Control (ASIC)
for Biomedical Engineering
application from the Institute of
Microelectronics, University Ulm,
Germany. Currently, she is a senior

lecturer in Faculty of Electrical Engineering, UiTM Penang,
Pulau Pinang, Malaysia. Her research interests include VLSI
digital ASIC, mixed-signal circuit design, FPGA and
electronics for biomedical applications (FES).

 Suhana Sulaiman received her
B.Sc in Electrical Engineering from
University of Utah, Salt Lake City,
USA in 1996 and M.Sc in
Microelectronics from University of
Newcastle Upon Tyne, UK in 2002.
Her Ph.D. degree in Electrical
Engineering from Universiti
Teknologi MARA, Shah Alam
Selangor, Malaysia in 2013.
Currently, she is a senior lecturer in

Faculty of Electrical Engineering, UiTM Shah Alam, Selangor.
Her research interests include RFIC, microelectronics,
electronics circuit and system and microfabrication.

Azilah Saparon, is an Associate
Professor at Faculty of Electrical
Engineering, UiTM Shah Alam,
Selangor, Malaysia. She received her
B.E.E from Gannon University, Erie,
Pennsylvania, U.S.A in 1989, M.Sc in
Electrical Engineering from
Washington State University at
Pullman,U.S.A in 1995 and a Ph.D in
Electronic and Electrical Engineering

from Loughborough University, Leicestershire, U.K 2006. Her
research interests include reconfigurable system, micro-
computer architecture and video coding.

	I. INTRODUCTION
	II. RESEARCH METHODLOGY
	A. Design Specification
	B. Modelling and Simulation of Serial Peripheral Interface (SPI)

	III. RESULTS & DISCUSSION
	A. Simultation Results for Each Modes of SPI using MoldelSim and VCS
	1) Simulation Result of Timing Waveform for MODE 1
	2) Simulation Result of Timing Waveform for MODE 2
	3) Simulation Result of Timing Waveform for MODE 3

	B. Register Transfer Level (RTL) Netlist Viewer Block Diagram of SPI using Quartus Prime 16.0
	C. Results of Design Compiler (DC) Analysis for SPI
	1) Block Diagram Of SPI Using DC Analysis

	References

