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Abstract—An efficient spectrum prediction model is presented 

to improve the spectrum utilization in cognitive radio network. In 
this model, a novel improved version of Teaching-Learning-
Based-Optimization algorithm, also referred to iTLBO algorithm, 
is proposed to train a feedforward artificial neural network 
(ANN). The performance of the proposed iTLBO-ANN model is 
compared with some hybrid prediction models, including the 
genetic algorithm with ANN (GA-ANN), the firefly algorithm with 
ANN (FF-ANN), and the conventional TLBO algorithm with ANN 
(TLBO- ANN). Performance evaluation via a real-word spectrum 
dataset (GSM-900) confirms that iTLBO-ANN outperforms other 
spectrum prediction schemes in terms of prediction error and 
prediction efficiency. 
 

Index Terms— Cognitive radio, Spectrum prediction, Artificial 
neural network, TLBO, Evolutionary algorithms   
 

I. INTRODUCTION 
UE to the increasing demand for wireless applications such 
as mobile internet and Internet of Things (IOT) over the 

past decades, more efficient frequency spectrum management 
has become a critical challenge. Because of static spectrum 
regulations, a considerable amount of frequency band remains 
unused in normal conditions. Therefore, the frequency 
spectrum efficiency can be significantly reduced. A promising 
solution for efficient management of frequency spectrum is 
cognitive radio (CR). In CR, the radio can adjust its parameters 
according to what becomes aware of, feels and learn about its 
environment [1-3]. Considering the channel access priority for 
the authorized or primary users (PUs), a CR user or secondary 
user (SU) can opportunistically occupy the frequency holes 
(unused licensed channels) as long as it does not any harmful 
interference to the PUs.  

Spectrum management in a CR network is divided into four 
major functions including spectrum sensing to understand the 
spectrum occupancy of PUs, spectrum decision to select the 
best available channel based on what has been recognized in the 
spectrum sensing, spectrum sharing to optimally share the 
spectrum holes with other CR users, and spectrum mobility to  

 
 

 
handoff the spectrum when the current spectrum is required 

by the returned PU. Since all of these are time and energy 
consuming functions [4], prediction-based spectrum 
management have been widely studied in literature [5-10]. The 
objective of a spectrum prediction technique is to predict the 
next status of the spectrum based on the current and previous 
observations. Clearly, having information about the status of 
frequency channels in different time slots provides valuable 
insights for regulators and decision makers to make conscious 
decisions on future spectrum assignment [11]. A CR user can 
therefore sense those channels that are probably idle, decide and 
select a high quality channel and leave the channel at the right 
time based on the predicted behavioral model of users.  

In [4], the authors summarize the state of the art of spectrum 
prediction for the CR networks in an interesting way. However, 
various techniques have been introduced to predict spectrum 
occupancy using past spectrum sensing results. A binary time 
series model is presents in [5] for spectrum occupancy 
characterization and prediction. In [6], a spectrum prediction 
model based on the MLP neural network is proposed and its 
prediction accuracy is compared with a conventional HMM 
predictor. In [7], the frame structure of SUs are redesigned by 
adding a spectrum prediction function to select only the 
channels for sensing that are predicted to be idle. A spectrum 
prediction scheme for multi-PU multi-SU Cognitive radios is 
presented in [8]. In this scheme, the cooperative group 
formation process is modeled as a coalitional game and a 
coalition formation algorithm is proposed. In [9], the 
performance of the cooperative spectrum prediction as a 
function of PUs channel occupancy is investigated using HMM 
and MLP predictors. In [10], a spectrum entropy prediction 
method is proposed to select a channel with better stability to 
avoid frequent interruptions of channel access in CR networks.         

In this work, the spectrum data for the GSM-900 downlink 
band are collected using a radiometer that measures the RSS 
over the spectrum. The main contributions of this work are 
summarized as follows: 
- An improved Teaching-Learning-Based-Optimization 

(iTLBO) algorithm is presented.  
- A novel hybrid spectrum prediction model is developed. 

This model uses the proposed iTLBO algorithm to train a 
multi-layer Artificial-Neural-Network (ANN) weights.  

- A real-world spectrum data analysis is presented to 
evaluate the data correlations in time domain. 
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-  Several spectrum prediction algorithms, including GA-
ANN, FF-ANN and TLBO-ANN, are also simulated for 
the real-world data. However, comparing the proposed 
scheme with other spectrum prediction models confirms 
the effectiveness and efficiency of the proposed iTLBO-
ANN model.    

The rest of the paper is organized as follows. The system 
model is presented in section 2. Section 3 describes the 
proposed prediction algorithm. The experimental evaluations 
are performed in section 4. Finally, Section 5 is a conclusion of 
this paper. 

II. SYSTEM MODEL  
In a CR network, a radio spectrum segment (a channel) is 

assigned to each user for data transmit/receive.  Since PUs have 
higher priority to use the licensed spectrum than SUs, the SUs 
can only use the spectrum channels that are not occupied by 
PUs. However, if a PU needs a specific channel that has already 
been occupied by a SU, the SU must immediately leave the 
channel. 

Fig. 1 shows a binary form spectrum data matrix 𝐃𝐃 ∈ ℝ𝐹𝐹×𝑇𝑇 
with F rows and T columns. Each row 𝐝𝐝𝑖𝑖,. ≔ �𝑑𝑑𝑖𝑖,1,𝑑𝑑𝑖𝑖,2, … ,𝑑𝑑𝑖𝑖,𝑇𝑇�, 
𝑑𝑑𝑖𝑖,. ∈ {0, 1}, and 𝑖𝑖 ∈ {1, … ,𝐹𝐹}, indicates a frequency band and 
each column 𝐝𝐝.,𝑗𝑗 ≔ �𝑑𝑑1,𝑗𝑗 ,𝑑𝑑2,𝑗𝑗 , … ,𝑑𝑑𝐹𝐹,𝑗𝑗�

′
, 𝑑𝑑.,𝑗𝑗 ∈ {0, 1}, and 𝑗𝑗 ∈

{1, … ,𝑇𝑇}, indicates a time slot, where (. )′ represents the 
transpose operation. A time slot 𝐝𝐝.,𝑗𝑗  denotes the state 
distribution of 𝐹𝐹 frequency bands. Each matrix element 𝑑𝑑𝑖𝑖,𝑗𝑗 , 𝑖𝑖 ∈
{1, … ,𝐹𝐹}, 𝑗𝑗 ∈ {1, … ,𝑇𝑇} shows the stat of the 𝑖𝑖th frequency band 
in the 𝑗𝑗th time slot. Taking spectrum occupancy status of 𝑇𝑇 − 1 
previous time slots into account, the objective of spectrum 
prediction is to forecast the spectrum status of 𝑇𝑇th time slot 
[11].  

 To characterize the spectrum state, a radiometer is used to 
sense the spectrum and measure the power spectral density 
(PDS) of frequency bands. The measured spectrum data 𝑥𝑥 at 𝑖𝑖th 
frequency band in the 𝑗𝑗th time slot is denoted as 

 
𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑠𝑠𝑖𝑖,𝑗𝑗 + 𝑤𝑤𝑖𝑖 ,𝑗𝑗 (1) 

 
where 𝑠𝑠𝑖𝑖,𝑗𝑗  represents the PDS of the signal of interest, and 

𝑤𝑤𝑖𝑖,𝑗𝑗 is additive noise component with zero mean and variance 
𝜎𝜎2. In the absence of a signal, only the noise component is 
measured by radiometer as 

 
𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑤𝑤𝑖𝑖,𝑗𝑗 (2) 

 
Each measured data is then compared with a detection 

threshold 𝑘𝑘 to obtain binary spectrum occupancy (BSO) 
information as follow 

 

𝑑𝑑𝑖𝑖,𝑗𝑗 = �
1, 𝑥𝑥𝑖𝑖,𝑗𝑗 > 𝑘𝑘
0, 𝑥𝑥𝑖𝑖,𝑗𝑗 < 𝑘𝑘 (3) 

 
where 𝑑𝑑𝑖𝑖,𝑗𝑗  is the spectrum data matrix element in the 𝑖𝑖th 

frequency band and the 𝑗𝑗th time slot as mentioned above. Due 

to several environmental factors such as fading, shadowing, and 
so on, the validity of the spectrum occupancy information 
should be checked. There are some effective methods to 
provide reliable spectrum sensing in literature [12-14]. 
Assuming reliable data sensing is provided by one of the 
reliable methods, the noise floor (NF) is selected as detection 
threshold 𝑘𝑘 in this study.  

III. PROPOSED ALGORITHM 
Due to the importance of training process in ANN, robust 

optimization techniques can be used to attain more accurate and 
efficient performances. Based on the results reported in [15-17], 
teaching-learning-based optimization (TLBO) is an efficient 
and accurate optimization method and shows superior 
performance in comparison with some other naturally inspired 
optimization algorithms such as genetic algorithm (GA) [18], 
particle swarm optimization (PSO) [19], differential evolution 
(DE) [20], artificial bee colony (ABC) [21] and firefly 
algorithm (FA) [22]. TLBO algorithm has some remarkable 
advantages such as simple implementation, low computational 
complexity, high ability to find the global optimum, fewer 
required control variables, and low dependency of the final 
solution convergence to the initial population.  

In the proposed approach, a feed-forward ANN is utilized to 
predict the channel status in order to improve the overall 
efficiency and throughput of spectrum bands. Furthermore, an 
improved TLBO (iTLBO) algorithm is proposed and used to 
find optimal weights and biases of the ANN in training process. 
The proposed iTLBO-ANN model is compared with some other 
prediction models in terms of prediction error and prediction 
efficiency [23].  

A. Teaching-Learning-Based Optimization (TLBO) 
Proposed by Rao et al. [15], TLBO algorithm is a simple and 

 
 
Fig. 1. A binary form spectrum data matrix   
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efficient population-based optimization technique which 
models the effect of a teacher on knowledge of the students in 
a classroom. A group of randomly generated learners (students) 
are considered as initial population. The knowledge of the 
students is evaluated by a specific fitness function. A person 
with the minimal objective function is chosen as teacher who 
shares his/her knowledge with other students. The quality of the 
students directly depends on the quality of the teacher 
knowledge. To increase the knowledge of the class, two 
different phases called "teacher phase" and "student phase" are 
implemented in TLBO process.  

In teacher phase, the teacher tries to modify the knowledge 
of the students by shifting the mean value of them (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
toward a new mean (𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒) as   

 
𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘) = 𝑋𝑋𝑖𝑖(𝑘𝑘) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒(𝑘𝑘)

− 𝑇𝑇𝐹𝐹𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘)) (15) 

 
where 𝑘𝑘 is the iteration number and rand is a random number 

changing in the range of 0 to 1. 𝑇𝑇𝐹𝐹  is the teaching factor and 
randomly determined equal to 1 or 2. A modified student 𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 
replaces 𝑋𝑋𝑖𝑖 if it gives a better function value. 

In the student phase, the students improve their knowledge 
(and so, the average fitness of the entire population) through 
interactions among themselves. Two students 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 (𝑖𝑖 ≠
 𝑗𝑗) are randomly selected to interact based on the following 
mathematical expressions: 

 
𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘) = 𝑋𝑋𝑖𝑖(𝑘𝑘)

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑋𝑋𝑖𝑖(𝑘𝑘)
− 𝑋𝑋𝑗𝑗(𝑘𝑘)�;           𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖)
> 𝑓𝑓(𝑋𝑋𝑗𝑗) 

(16) 

 
𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘) = 𝑋𝑋𝑖𝑖(𝑘𝑘)

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑋𝑋𝑗𝑗(𝑘𝑘)
− 𝑋𝑋𝑖𝑖(𝑘𝑘)�;           𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗)
> 𝑓𝑓(𝑋𝑋𝑖𝑖)  

(17) 

 
where 𝑓𝑓(. ) means the objective function of corresponding 

solution. Again, 𝑋𝑋𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛  is accepted if it gives a better function 
value than 𝑋𝑋𝑖𝑖.  

It can be seen that the teacher phase efforts to improve the 
convergence rate, while the student phase aims to enhance the 
population diversity. 

 

B. Improved TLBO  
Proposed In order to balance between exploitation and 

exploration ability of TLBO algorithm, a novel improved 
version of TLBO algorithm (iTLBO) is presented in three 
aspects to incorporate into original TLBO. These measures are 
carried out as follows: 

 
1) Opposition-Based initialization 

The population of the TLBO is initialized randomly. A more 
uniform distribution of the random guess in the solution space 

increases the convergence speed of the algorithm. On the one 
hand, for an efficient initial guess and hence a fast convergence, 
all directions of solution space should be looked 
simultaneously. On the other hand, without any a-priori 
knowledge, it is not possible to generate a uniform random 
population in the solution space. So, for the initial random 
population 𝑿𝑿 ≔ [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑛𝑛], where 𝑋𝑋𝑖𝑖 ∈ {𝑎𝑎, 𝑏𝑏} and 𝑛𝑛 
is population size, an opposite population 𝑿𝑿� ≔
[𝑋𝑋�1,𝑋𝑋�2, … ,𝑋𝑋�𝑖𝑖 , … ,𝑋𝑋�𝑛𝑛],  𝑋𝑋�𝑖𝑖 ∈ {𝑎𝑎, 𝑏𝑏} is defined [26], where 

 
𝑋𝑋�𝑖𝑖 = 𝑎𝑎 + 𝑏𝑏 − 𝑋𝑋𝑖𝑖;     𝑖𝑖 = 1, … ,𝑛𝑛 (18) 

 
The individual 𝑋𝑋�𝑖𝑖 is selected for initial population if 𝑓𝑓(𝑋𝑋�𝑖𝑖) >

𝑓𝑓(𝑋𝑋𝑖𝑖). However, a bi-directional search in the solution space 
increases the chance of approaching the global solution and also 
decreases the running time [26].  
 
2) Experienced teacher 

Unlike a real teaching-learning system in which the students 
may learn any proportion of the teacher's knowledge, the 
student can only learn nothing (𝑇𝑇𝐹𝐹 = 1) or all the things (𝑇𝑇𝐹𝐹 =
2) from the teacher in original TLBO [15-17]. In the proposed 
experience-oriented learning system, the experienced teacher 
teaches the worse learner more than the better learner. This can 
be model by an adaptive teaching factor in teacher phase. In 
each iteration, the adaptive 𝑇𝑇𝐹𝐹  for the student 𝑋𝑋𝑖𝑖 is modified as  

 

𝑇𝑇𝐹𝐹 = 2 −
𝑓𝑓(𝑋𝑋𝑖𝑖)

𝑓𝑓(𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒)
 (19) 

 
The adaptive variation of the teaching factor during the 

search can be improve both the convergence speed and the 
exploration capability of the TLBO algorithm.  
 
3) Self learning 

In self-learning, the students can use their accumulated 
historical experience to learn in addition to the knowledge of 
others. Having a degree of blindness, the learning of the student 
is guided to their own gradient information [17, 27]. 
Considering self-learning, the student phase is implemented for 
iteration k as follow 

 
𝑋𝑋𝑖𝑖,𝑛𝑛𝑒𝑒𝑒𝑒(𝑘𝑘) = 𝑋𝑋𝑖𝑖(𝑘𝑘) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑋𝑋𝑖𝑖(𝑘𝑘) − 𝑋𝑋𝑗𝑗(𝑘𝑘)�

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋𝑖𝑖(𝑘𝑘) − 𝑋𝑋𝑖𝑖(𝑘𝑘
− 1));      𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖) > 𝑓𝑓(𝑋𝑋𝑗𝑗) 

(20) 

 
𝑋𝑋𝑖𝑖,𝑛𝑛𝑒𝑒𝑒𝑒(𝑘𝑘) = 𝑋𝑋𝑖𝑖(𝑘𝑘) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑋𝑋𝑖𝑖(𝑘𝑘) − 𝑋𝑋𝑗𝑗(𝑘𝑘)�

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋𝑖𝑖(𝑘𝑘) − 𝑋𝑋𝑖𝑖(𝑘𝑘
− 1));      𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗) > 𝑓𝑓(𝑋𝑋𝑖𝑖) 

(21) 

 
To verify the performance of the iTLBO algorithm, it applied 

to 10 benchmark functions. These functions are listed in Table1. 
Range denotes the searching space of the decision variables and 
𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 is the global optimum. To compare the performance of the 
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proposed iTLBO, the experiments are also carried out on some 
other population-based optimization algorithms, including 
CLPSO [28], jDE [29], ABC [21], TLBO [15-17], and IETLBO 
[30]. Mean results of the 100 runs of the six algorithms on the 
10 benchmark functions with 50 dimensions are summarized in 
Table 2, wherein the best results are shown in bold. In this table, 
‘Mean’ is the mean result among 100 runs, and ‘Std’ is the 
standard deviation.  

Table 2 shows that iTLBO is outperforms other algorithms 
in terms of mean solution and standard deviation for all 

benchmark functions except f7 and mean solution of f9. This 
indicates the ability of iTLBO algorithm to solve complex 
problems. For function f7, the mean best solution and standard 
deviation of IETLBO are smaller than those of other 
algorithms. Also for function f9, the mean solution of the 
IETLBO is the best.  

C. . iTLBO-ANN Predictor Scheme  
Although BP algorithm is the mostly used artificial neural 

network, there are some inherent defects in it. Firstly, it easily 

TABLE I 
BENCHMARK FUNCTIONS   

𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎 Range Formula Function 
𝟎𝟎 [−𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏] 

𝒇𝒇𝟏𝟏(𝒙𝒙) = � 𝒙𝒙𝒊𝒊𝟐𝟐
𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓1 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺) 

𝟎𝟎 [−𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟐𝟐(𝒙𝒙) = � 𝒊𝒊𝒊𝒊𝒊𝒊𝟐𝟐

𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓2 (𝑺𝑺𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺) 

𝟎𝟎 [−𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟑𝟑(𝒙𝒙) = � (� 𝒙𝒙𝒋𝒋𝟐𝟐

𝒊𝒊

𝒋𝒋=𝟏𝟏
)

𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓3 (𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸) 

𝟎𝟎 [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟒𝟒(𝒙𝒙) = � 𝒙𝒙𝒊𝒊𝟐𝟐

𝑫𝑫

𝒊𝒊=𝟏𝟏
+ �� 𝟎𝟎.𝟓𝟓𝟓𝟓𝒙𝒙𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏
�
𝟐𝟐

+ �� 𝟎𝟎.𝟓𝟓𝟓𝟓𝒙𝒙𝒊𝒊
𝑫𝑫

𝒊𝒊=𝟏𝟏
�
𝟒𝟒

 
𝑓𝑓4 (𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁) 

𝟎𝟎 [−𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟓𝟓(𝒙𝒙) = � |𝒙𝒙𝒊𝒊| + � |𝒙𝒙𝒊𝒊|

𝑫𝑫

𝒊𝒊=𝟏𝟏

𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓5 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’𝒔𝒔 𝑷𝑷𝑷𝑷.𝟐𝟐𝟐𝟐) 

𝟎𝟎 [−𝟑𝟑𝟑𝟑,𝟑𝟑𝟑𝟑] 
𝒇𝒇𝟔𝟔(𝒙𝒙) = � �𝟏𝟏𝟏𝟏𝟏𝟏�𝒙𝒙𝒊𝒊𝟐𝟐 − 𝒙𝒙𝒊𝒊+𝟏𝟏�

𝟐𝟐
+ (𝒙𝒙𝒊𝒊 − 𝟏𝟏)𝟐𝟐�

𝑫𝑫−𝟏𝟏

𝒊𝒊=𝟏𝟏
 𝑓𝑓6 (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹) 

 
𝟎𝟎  

[−𝟑𝟑𝟑𝟑,𝟑𝟑𝟑𝟑] 𝒇𝒇𝟕𝟕(𝒙𝒙) = � −𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐�−𝟎𝟎.𝟐𝟐�
𝟏𝟏
𝑫𝑫
� 𝒙𝒙𝒊𝒊𝟐𝟐

𝑫𝑫

𝒊𝒊=𝟏𝟏
�

𝑫𝑫

𝒊𝒊=𝟏𝟏

− 𝒆𝒆𝒆𝒆𝒆𝒆�
𝟏𝟏
𝑫𝑫
� 𝒄𝒄𝒄𝒄𝒄𝒄(𝟐𝟐𝟐𝟐𝒙𝒙𝒊𝒊)

𝑫𝑫

𝒊𝒊=𝟏𝟏
� + 𝟐𝟐𝟐𝟐 + 𝒆𝒆 

 
𝑓𝑓7 (𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨) 

𝟎𝟎 [−𝟓𝟓.𝟏𝟏𝟏𝟏,𝟓𝟓.𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟖𝟖(𝒙𝒙) = � (𝒙𝒙𝒊𝒊𝟐𝟐 − 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏(𝟐𝟐𝟐𝟐𝒙𝒙𝒊𝒊) + 𝟏𝟏𝟏𝟏)

𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓8 (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹) 

𝟎𝟎 [−𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏] 
𝒇𝒇𝟗𝟗(𝒙𝒙) = 𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒄𝒄 �𝟐𝟐𝟐𝟐�� 𝒙𝒙𝒊𝒊𝟐𝟐

𝑫𝑫

𝒊𝒊=𝟏𝟏
� + 𝟎𝟎.𝟏𝟏�� 𝒙𝒙𝒊𝒊𝟐𝟐

𝑫𝑫

𝒊𝒊=𝟏𝟏
 

𝑓𝑓9 (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺) 

𝟎𝟎 [−𝟔𝟔𝟔𝟔𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔] 
𝒇𝒇𝟏𝟏𝟏𝟏(𝒙𝒙) =

𝟏𝟏
𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

� 𝒙𝒙𝒊𝒊𝟐𝟐
𝑫𝑫

𝒊𝒊=𝟏𝟏
−� 𝒄𝒄𝒄𝒄𝒄𝒄 �

𝒙𝒙
√𝒊𝒊
� + 𝟏𝟏

𝑫𝑫

𝒊𝒊=𝟏𝟏
 𝑓𝑓10 (𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮) 

 
 

TABLE II 
THE COMPARATIVE RESULTS OF ITLBO WITH OTHER OPTIMIZATION ALGORITHMS 

    
iTLBO IETLBO TLBO ABC jDE CLPSO  Function 

0.00E+00 0.00E+00 1.00E−121 1.43E−78 1.12E−51 1.65E−35 Mean 
𝒇𝒇𝒇𝒇  0.00E+00 0.00E+00 0.00E+00 1.17E−78 1.56E-51 1.01E−35 Std. 

0.00E+00 1.71E−87 7.04E−43 3.41E−25 6.23E−18 7.03E−20 Mean 
𝒇𝒇𝒇𝒇  0.00E+00 1.83E−88 4.19E−43 2.89E−25 1.45E−18 2.09E−20 Std. 

0.00E+00 2.03E−76 1.13E−33 2.43E−12 1.73E−13 2.60E−14 Mean 𝒇𝒇𝒇𝒇  0.00E+00 1.41E−76 1.51E−33 1.12E−12 1.14E−13 1.18E−14 Std. 
0.00E+00 1.69E−110 9.01E−88 4.19E−45 2.11E−19 5.71E−10 Mean 𝒇𝒇𝒇𝒇  0.00E+00 0.00E−00 1.53E−88 1.81E−45 2.50E−19 2.01E−10 Std. 

4.19E−115 5.01E−42 1.35E−38 1.73E−50 3.19E−11 5.71E−9 Mean 𝒇𝒇𝒇𝒇  1.35E−115 4.00E−42 1.51E−38 1.03E−51 1.43E−11 3.55E−9 Std. 
7.05E−108 5.06E−86 1.73E−61 2.17E−20 5.34E−25 2.23E−11 Mean 

𝒇𝒇𝒇𝒇  6.30E−108 4.30E−86 2.28E−62 2.01E−20 1.33E−26 1.18E−11 Std. 
1.55E−92 5.11E−95 7.36E−29 1.83E−21 3.45E−19 8.14E−9 Mean 𝒇𝒇𝒇𝒇  8.01E−92 5.03E−96 6.63E−29 2.54E−21 2.71E−19 4.18E−10 Std. 
1.12E−88 1.41E−42 2.19E−13 3.24E−16 6.18E−18 3.11E−19 Mean 𝒇𝒇𝒇𝒇  3.62E−89 4.16E−42 1.42E−13 8.13E−15 1.17E−18 2.21E−19 Std. 
5.15E−84 8.05E−92 2.75E−80 6.35E−52 1.82E−21 9.05E−22 Mean 𝒇𝒇𝒇𝒇  0.00E+00 7.20E−92 1.60E−80 1.56E−52 1.90E−21 1.67E−23 Std. 

4.45E−115 1.17E−42 5.60E−35 1.84E−50 1.55E−17 4.12E−8 Mean 𝒇𝒇𝒇𝒇𝒇𝒇  0.00E+00 8.65E−43 4.32E−35 2.50E−50 2.45E−18 2.60E−8 Std. 
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falls into local optimum. Then, for numerous uncertain CR 
channel data, the network cannot converge and so, the global 
optimal predictive model is hard to obtain by such a gradient-
based algorithm. Second, it convergences very slowly. The 
speed of the BP-ANN convergence depends very much on the 
algorithm parameters such as learning rate and momentum 
factor as well as the size of derivative of related activation 
function [24-25, 31]. On the other hand, fast convergence speed 
and  efficient global optimum searching ability are two 
important advantages of iTLBO algorithm. So, a hybrid 
iTLBO-ANN scheme is used to simultaneously take advantages 
of both ANN and iTLBO algorithm for spectrum prediction in 
cognitive radios. In this scheme, ANN is used to model the 
traffic characteristic of spectrum channel and iTLBO algorithm 
is used for ANN training to increase the accuracy and efficiency 
of ANN-based channel status predictor. In fact, the iTLBO is 
applied to select the optimal weights and threshold values of 
ANN during training process.  

In this regard, a population of solutions is randomly 

initialized, in which each solution consists of the ANN 
parameters (weights and threshold values) to be updated. Then, 
the population is evolved through the knowledge improvement 
of students to obtain optimal solution with minimum error rate. 
In this case, a sample of training data, which is related to 
channel status data, is applied as the input variable to ANN. The 
optimal parameter search process is evaluated using mean 
square error function as the fitness function. These error criteria 
are applied to calculate the objective function value of each 
solution (student) in iTLBO algorithm. The best solution, who 
gives the minimum value of the fitness function, is driven to the 
next generation as teacher. Weights and threshold values are 
consistently updated until stopping criterion is satisfied.   

IV. EXPERIMENTAL EVALUATION 
Use The real-world spectrum data, measured for 925-

960MHz frequency band, is used to demonstrate the 
effectiveness of the proposed iTLBO-ANN scheme. The data 
have been prepared during approximately four months using a 
radiometer. The resolution bandwidth of individual spectrum 
band is 0.2MHz (175 frequency bins) and the inter-sample time 
is 1 min, which results in 180000 samples for 125 days from 
September 23, 2018 to January 18, 2019. The value of NF is 
measured as -40dbm.  

To analyze the temporal correlations of the real-world 
spectrum dataset, the Pearson correlation coefficient (PCC) 
method [32] is used. The PCC between two vector random 
variables 𝒂𝒂 and 𝒃𝒃 is defined as 

 

𝜌𝜌𝒂𝒂,𝒃𝒃 =
cov(𝒂𝒂,𝒃𝒃)
𝜎𝜎𝒂𝒂𝜎𝜎𝒃𝒃

=
𝐸𝐸[(𝒂𝒂 − 𝜇𝜇𝒂𝒂)(𝒃𝒃 − 𝜇𝜇𝒃𝒃)]

𝜎𝜎𝒂𝒂𝜎𝜎𝒃𝒃
 (22) 

 
where 𝜇𝜇𝒂𝒂 and 𝜇𝜇𝒃𝒃 are the true means and 𝜎𝜎𝒂𝒂 and 𝜎𝜎𝒃𝒃 are the 

true standard deviations of vector random variables 𝒂𝒂 and 𝒃𝒃, 
respectively. The value of 𝜌𝜌𝒂𝒂,𝒃𝒃  ranges from +1 to −1. A value 
of +1(or -1) indicates that 𝒂𝒂 is fully positively (or negatively) 
correlated to 𝒃𝒃 and a value of 0 shows that 𝒂𝒂 is not correlated 
to 𝒃𝒃 at all.  Figure 2a represents the correlations in time domain 
for the real-world spectrum data matrix 𝐗𝐗. To do this, 𝒂𝒂 and 𝒃𝒃 
variables in Equation 22 are replaced by two columns 𝑥𝑥.,𝑖𝑖 , 𝑖𝑖 ∈
{1, … ,𝑇𝑇} and   𝑥𝑥.,𝑗𝑗 , 𝑗𝑗 ∈ {1, … ,𝑇𝑇}, respectively. Compared to the 
Gaussian noise data with close to zero correlation matrix (Fig. 
2b), the real-world data display significant time correlations 
(Fig. 2a). As can be seen, there are high correlations between 
adjacent and far apart time slots. In should be noted that in some 
of the time slots, most of the frequency bands are idle. So, just 
like a noisy signal, the correlations are low. This reason justifies 
the low correlation regions in Fig. 2a. 

A. Evaluation Metrics 
Although The spectrum prediction performance is quantified 

in terms of prediction error and prediction efficiency metrics. 
Mean absolute error (MAE) and root mean square error 
(RMSE) are used to evaluate the performance of the ANN in 
combination with evolutionary algorithm as follows: 

 

(a) 

 

(b) 

Fig. 2. Correlations in time domain    
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𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑦𝑦𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛

𝑖𝑖=1

 (23) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
��𝑦𝑦𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑦𝑦𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�

2
𝑛𝑛

𝑖𝑖=1

�
1/2

 (24) 

where 𝑦𝑦𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  are the actual and predicted 
spectrum data, respectively. The smaller the RMSE and MRE, 
the more accurate and stable the predicted output. To evaluate 
the prediction efficiency, two well-used metrics including 
prediction accuracy (PA) and secondary user throughput (SUT) 
are applied for each time-slot. For each time-slot 𝑑𝑑.,𝑗𝑗, the PA is 
defined as 

𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑃𝑃−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑁
 (25) 

where 𝑁𝑁 is the total number of frequency channels and 
𝑁𝑁𝑃𝑃−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the number of frequency channels that are 
correctly predicted. For each time-slot, the SUT as a measure 
of secondary user spectrum utilization is calculated by 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑃𝑃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝐴𝐴−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (26) 

 where 𝑁𝑁𝑃𝑃−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑁𝑁𝐴𝐴−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represent the number of 
frequency channel predicted to be idle and the number of actual 
idle frequency channels, respectively. 

 
B. Performance Comparison  

This sub-section evaluates the performance of the proposed 
iTLBO-ANN based channel prediction scheme in comparison 
with GA-ANN, FF-ANN and TLBO-ANN prediction models 
through simulation study. Like the iTLBO-ANN model in 
which the ANN is trained using iTLBO algorithm, GA, FF and 
TLBO are used to train the ANN in GA-ANN, FF-ANN and 
TLBO-ANN models, respectively. Table 3 shows the 
parameters and their settings for the TLBO, GA and FF 
algorithms, which were determined after some preliminary 
experiments. 

TABLE III 
The parameters of TLBO, GA and FF algorithms  

TLBO Parameters GA Parameters FF Parameters 
Population size 60 Population size 60 Population size 60 
Number of iterations 500 Crossover rate 0.9 Initial attractiveness 1 
  Mutation rate 0.01 Absorption coefficient 1 
  Number of iterations 500 Number of iterations 500 

 
TABLE IV 

The average and best values of MAE and RMSE 
Model Index Average% Best% 

GA-ANN MAE 7.20 6.55 
RMSE 7.80 7.36 

FF-ANN MAE 6.90 6.15 
RMSE 7.85 7.20 

TLBO-ANN MAE 6.95 6.10 
RMSE 7.70 6.94 

iTLBO-ANN MAE 3.05 2.60 
RMSE 4.55 4.25 

 
 

 

 

Fig. 3. Prediction Accuracy (PA) of the prediction models    
 

 

Fig. 4. Secondary User Throughput (SUT) of the prediction models  
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In simulations, a sliding window is applied to pick 𝑇𝑇 − 1 
successive samples from spectrum data as the ANN inputs. The 
𝑇𝑇𝑇𝑇ℎ sample is set as the desired output. The error threshold and 
the maximum number of iterations are set to 10−5 and 103, 
respectively.  

Table 4 provides the average and best values of MAE and 
RMSE. The prediction tests are carried out for 100 times 
independently. The number of hidden nodes are set to 15. It is 
found from the table that iTLBO-ANN achieve the best 
performances in this case study. The average and best MAE 
values for the iTLBO-ANN are 3.05% and 2.60%, respectively, 
which are lower than those of the other ANN-based prediction 
schemes. Thus, the average prediction of the iTLBO-ANN 
model is nearly 97%. Furthermore, the smallest average and 
best RMSA values are obtained from the iTLBO-ANN models, 
i.e., 4.55% and 4.25%. So, the iTLBO-ANN could maintain 
higher stability when predicting the channel status.  

For assessing the prediction efficiency, a new scenario is 
designed in which 10 upcoming samples are predicted without 
updating the model.  Fig. 3 and 4 clarify that the proposed 
iTLBO-ANN model has the best performances in terms of the 
PA and SUT metrics. The number of hidden nodes are set to 15 
and the mean result of the 100 independent runs are reported. 
For the first five predictions, the iTLBO-ANN model provide 
quiet accurate results. However, since the model is not updated, 
the prediction success is degraded from beginning the sixth 
time-slot. It should be noted that despite the lower accuracy of 
other prediction models compared to the iTLBO-ANN model, 
the performance of these models in predicting the first five 
samples is also acceptable.  

V. CONCLUSION AND FUTURE WORK 
The A novel spectrum prediction scheme is presented to 

increase the spectrum efficiency of cognitive radio networks. In 
this scheme, a multi-layer ANN is used to model the traffic 
characteristic of spectrum channel and a new improved version 
of TLBO (iTLBO) algorithm is used for ANN training. The 
real-world spectrum data, measured for 925-960MHz 
frequency, is used to demonstrate the effectiveness of the 
proposed iTLBO-ANN prediction model. Performance 
evaluation via real-world spectrum dataset confirms the 
effectiveness and efficiency of the proposed model. The 
presence of measurement errors and missing data in historical 
observations and their effects on the proposed model will be 
investigated in the future work.  
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