UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

CLASSIFICATION OF EXCESSIVE WATER USAGE BASED ON A QUANTIFIER FUZZY CLASSIFICATION SYSTEM

P08S18

HALIMATUSAKINA BINTI OMAR HANIS WAHIDAH BINTI UZI

Bachelor of Science (Hons.) Mathematics Faculty of Computer and Mathematical Sciences

DECEMBER 2018

Acknowledgements

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MER-CIFUL.

Firstly, we are grateful to Allah S.W.T for giving us the strength to complete this project successfully.

We would like to express our deepest appreciation to those who provided us with array of possibilities to complete this research. A special gratitude given to the one and only supervisor, Dr Khairul A. Rasmani, who gave us the golden opportunity to complete this project on the research of Classification of Excessive Water Usage Based on A Quantifier Fuzzy Classification System which at the same time giving numerous guidances and advices along this research.

In addition, we would like to thank Dr Khairul A. Rasmani for believing in us and also the endless supports from both of our families and friends which they have been very supportive since day one. Last but no least, we would like to thank each one of us for giving the best and managed to cope with each other along this research. Thank you.

Abstract

Excessive usage of water at residential premises can be predicted based on consumer water consumption data. Unfortunately, the estimation of domestic water consumption involve many predicting variables.

Fuzzy Rule-Based System (FRBS) could be used to classify the dataset containing variables related to consumer water usage activities. However, the presence of too many variables and linguistic terms will make the decision making in determining the classification of water usage complicated. Other than that, some of the decision may not be accurate and the prediction of accuracy is expected to be very low due too many data that cannot be properly interpreted by expert.

This study investigates how Fuzzy Rule-Based System (FRBS) can be used to classify data containing variables related to water usage activities at residential premises. A fuzzy quantifier based classification system or known as Fuzzy QSBA is proposed to be used as a method to generate and simplifies rules. The fuzzy rulesets will be executed into classification of water usage by likely or unlikely. Then, the predicted classification outcomes will be compared with the actual classification.

The contribution of this study is obvious as the resulting outcomes which is Fuzzy QSBA will give the predicted comparable classification outcomes with the actual classification. The uniqueness of this study exists in the fact that the decision making will be easier and there has no dependency of experts in determining the classification of excessive water usage.

Contents

Ac	Acknowledgements								
At	Abstract								
Co	Contents								
Li	List Of Tables								
Li	List Of Figures								
1	Introduction								
	1.1	Introduction	1						
	1.2	Problem Statement	2						
	1.3	Objectives	2						
	1.4	Significance of Study	2						
	1.5	Scope of Study	3						
2	Lite	Literature Review							
	2.1	Applications of Fuzzy Rule-Based System in Decision Making							
	2.2	2 Comparison of Rule Selection Method for Fuzzy Rule-Based System							
	2.3 Generation of Fuzzy Rule Selection Using Quantifier Based Fuzzy Classi-								
		fication	10						
3	Methodology and Implementation								
	3.1 Research Activities								
	3.2	Research Methods	14						
		3.2.1 Fuzzy QSBA	14						

4	Res	on	17					
	4.1	I.1 Setup for the Experiments						
	4.2 Determination of Classification Accuracy							
4.3 Findings								
	son of Prediction based on Five Variables	20						
			4.3.1.1	Setup 1A	20			
			4.3.1.2	Setup 1B	22			
	son of Prediction based on Four Variables	24						
			4.3.2.1	Setup 2A	24			
			4.3.2.2	Setup 2B	26			
		4.3.3	Compari	son of Prediction based on Two Variables	28			
			4.3.3.1	Setup 3A	28			
			4.3.3.2	Setup 3B	30			
	4.4	Discus	sion		32			
5	Con	nclusion						
References								
Ap	Appendix A: Coding for Fuzzy QSBA							
Appendix B: Main Program for Fuzzy QSBA								
4p	Appendix C: Sample of Classification Results							

e¹