## CHROMATIC UNIQUENESS OF CERTAIN TRIPARTITE GRAPHS IDENTIFIED WITH A PATH

<sup>1</sup>G.C. Lau and <sup>2</sup>Y.H. Peng

<sup>1</sup>Faculty of Information Technology and Quantitative Science Universiti Teknologi MARA Cawangan Johor, Segamat, Johor
<sup>2</sup>Department of Mathematics and Institute for Mathematical Research Universiti Putra Malaysia, 43400 Serdang, Selangor

Abstract: For a graph G, let P(G) be its chromatic polynomial. Two graphs G and H are chromatically equivalent if P(G) = P(H). A graph G is chromatically unique if P(H) = P(G) implies that  $H \cong G$ . In this paper, we classify the chromatic classes of graphs obtained from  $K_{2,2,2} \cup P_m$  ( $m \ge 3$ ) (respectively,  $(K_{2,2,2} - e) \cup P_m$  ( $m \ge 5$ ) where e is an edge of  $K_{2,2,2}$ ) by identifying the end vertices of the path  $P_m$  with any two vertices of  $K_{2,2,2}$  (respectively,  $K_{2,2,2} - e$ ). As a by-product of this, we obtained some families of chromatically unique and chromatically equivalent classes of graphs.

Keywords: Chromatic polynomial, Chromatically unique, Chromatically equivalent

#### INTRODUCTION

Let  $P(G; \lambda)$  (or P(G)) denote the chromatic polynomial of a simple graph G. Two graphs G and H are chromatically equivalent ( $\chi$ -equivalent), denoted  $G \sim H$ , if P(G) = P(H). A graph G is chromatically unique ( $\chi$ -unique) if P(H) = P(G) implies that  $H \cong G$ . The equivalence class determined by G under  $\sim$  is denoted by [G]. Let  $\chi(G)$ , |V(G)|, |E(G)| be the chromatic number, the number of vertices and the number of edges of G, respectively. Then the cyclomatic number of G is |E(G)| - |V(G)| + 1.

Let  $K_n$ ,  $C_n$  and  $P_n$  denote a complete graph, a cycle and a path, respectively on *n* vertices. The complete *t*-partite graph whose *t* partite sets have  $r_1, r_2, \ldots, r_t$  vertices is denoted by  $K_{r_1, r_2, \ldots, r_t}$ . Let  $G \cup_2 H$  denote any graph obtained by overlapping an edge of *G* and *H* (or edge-gluing of *G* and *H*). It is shown in [1, 2] that  $K_{2,s} \cup_2 C_m$  and  $K_{2,2,2} \cup_2 C_m$  are  $\chi$ -unique for all  $s \ge 1, m \ge 3$ . In this paper, we classify the chromatic classes of graphs obtained from  $K_{2,2,2} \cup P_m$  ( $m \ge 3$ ) (respectively, ( $K_{2,2,2} - e$ )  $\cup P_m$  ( $m \ge 5$ ) where *e* is an edge of  $K_{2,2,2}$  by identifying the end vertices of the path  $P_m$  with any two vertices of  $K_{2,2,2}$  (respectively,  $K_{2,2,2} - e$ ). As a by-product of this, we obtained some families of chromatically unique and chromatically equivalent classes of graphs.

Throughout this paper, all graphs are assumed to be connected unless stated otherwise. Let G be a graph and let A be a subgraph of G. Let n(A, G) denote the number of subgraphs A in G. Let  $W_n$  denote the wheel (obtained by joining a vertex to every vertex of  $C_{n-1}$ ) of order  $n \ge 4$ . Also let  $U_n$  denote the graph obtained from  $W_n$  by deleting a spoke of  $W_n$  and  $C_n^*$  denote a chordless cycle of n vertices. If G has n vertices and m edges, we say G is an (n,m)-graph.

The following are some useful known results needed for determining the chromatic uniqueness of a graph.

Lemma 1 ([3]) Let G and H be two graphs such that  $G \sim H$ . Then G and H have the same number of vertices, edges and triangles. If both G and H has no  $K_4$  as subgraph, then  $n(C_4^*, G) = n(C_4^*, H)$ . Moreover,

 $-n(C_5^*, G) + n(K_{2,3}, G) + 2n(U_5, G) + 3n(W_5, G) = -n(C_5^*, H) + n(K_{2,3}, H) + 2n(U_5, H) + 3n(W_5, H).$ 

Lemma 2 ([6]) Let G be a graph, then G contains a cut-vertex if and only if  $(\lambda - 1)^2 | P(G)$ .

Lemma 2 implies that if  $H \sim G$ , then H is 2-connected if and only if G is also 2-connected.

Let *H* be a nonempty graph with two nonadjacent vertices *u* and *v*. Let *T* (respectively, *R*) be any graph obtained by identifying the end-vertices of a path  $P_m$   $m \ge 3$  with the vertices *u* and *v* (respectively, with any two adjacent vertices) of *H*. That is,  $R = H \cup_2 C_m$ . Let  $H^*$  be the graph obtained from *H* by identifying the two vertices *u* and *v* of *H*.

Lemma 3 ([5])  $P(T) = P(R) + (-1)^{m \cdot 1} P(H^*)$ .

We also need the following theorem to prove our main results.

Theorem 1: Let G be a 2-connected graph such that |E(G)| - |V(G)| = k. If G contains a connected subgraph F such that |E(F)| - |V(F)| = k - 1, then G must be the graph obtained from F by identifying the end vertices of a path  $P_m$ , m = |V(G)| - |V(F)| + 2 with two distinct vertices of F.

*Proof:* Since G contains F, we let Y = G - F and assume that there are e edges joining Y to F. Now note that |E(Y)| = |E(G)| - |E(F)| - e and |V(Y)| = |V(G)| - |V(F)| so that

$$|E(Y)| - |V(Y)| = |E(G)| - |V(G)| - (|E(F)| - |V(F)|) - e = 1 - e.$$
(1)

Let  $Y_1, Y_2, \ldots, Y_j, j \ge 1$  be the connected components of Y. Suppose there are  $e_i$  edges joining F and  $Y_i$ ,  $i = 1, \ldots, j$  so that  $e = \sum_{i=1}^{j} e_i$ . Let  $c_i$  denote the cyclomatic number of  $Y_i$ ,  $i = 1, \ldots, j$ . Let  $c = \sum_{i=1}^{j} c_i$ . Using Equation (1) and from the definition of cyclomatic number, we have

$$c = \sum_{i=1}^{j} c_i = 1 - e + j.$$
 (2)

Since G is 2-connected, we have  $e \ge 2j$ . Hence, Equation (2) implies that  $c \le 1 - j$ . Since  $c \ge 0$ , it follows that j = 1 and c = 0. Consequently, e = 2 and  $Y = Y_1$  must be the path  $P_{m}$  m = |V(G)| - |V(F)| + 2 whose end vertices are identified to two distinct vertices of F.  $\Box$ 

### COMPLETE TRIPARTITE GRAPH K2,2,2

In what follow, we let  $K_{2,2,2}^1(m)$  (respectively  $K_{2,2,2}^2(m)$ ) denote the graph obtained from  $K_{2,2,2} \cup P_m$  by identifying the end vertices of the path  $P_m$ ,  $m \ge 3$  with two adjacent (respectively, non-adjacent) vertices of  $K_{2,2,2}$ .

Theorem 2: The graph  $K_{2,2,2}^{i}(m)$  is  $\chi$ -unique for  $m \ge 3$  and i = 1, 2.

Proof: Suppose  $H \sim J \in \{K_{2,2,2}^i(m), i = 1, 2\}$ , then H is a 2-connected graph on m + 4 vertices and m + 11 edges. Since the graphs  $K_{2,2,2}^i(m)$ , i = 1, 2 are  $\chi$ -unique for m = 3, 4 (see [4]), we may assume  $m \geq 5$ . Note that by Lemma 1,  $n(K_3, J) = n(K_3, H) = 8$ ,  $n(C_4^*, J) = n(C_4^*, H) = 3$ . Furthermore,  $n(W_5, J) = 6$ ,  $n(C_5^*, J) \leq 1$ ,  $n(K_{2,3}, J) = n(U_5, J) = 0$ . By Lemma 1, it follows that

$$n(K_{2,3},H) + 2n(U_5,H) + 3n(W_5,H) \ge n(C_5^*,H) + 17 \ge 17.$$
(3)

We first note that a  $K_{2,2,2}$  contains six  $W_5$ . We now claim that H contains at least six  $W_5$  that forms a  $K_{2,2,2}$ . Suppose H does not contain a  $K_{2,2,2}$ . Note that any multipartite graph with a triangle and no  $K_4$  is also a tripartite graph. Since  $\chi(H) = 3$ , H has a triangle and no  $K_4$ . Hence, H is also a tripartite graph. So H must contain (i) a  $K_{1,2,2} = W_5$  or (ii) no  $K_{1,2,2}$ .

Case (i) H contains a  $K_{1,2,2}$ .

In this case, we note that H contains at most three  $K_{1,2,2}$  (that do not overlap on a  $C_4^*$ ). Otherwise, H must contain at least nine triangles or four  $C_4^*$  no matter how all the  $K_{1,2,2}$  overlap on each other, a contradiction. By Equation (3), this implies that  $n(K_{2,3},H) + 2n(U_5,H) \ge 8$ . If  $n(K_{2,3},H) \ge 2$ , then  $n(C_4^*,H) \ge 4$ , a contradiction. Therefore,  $n(K_{2,3},H) \le 1$  which implies that  $n(U_5,H) \ge 4$ . This further implies that  $n(C_4^*,H) \ge 4$ , a contradiction.

Case (ii) H contains no  $K_{1,2,2}$ .

This implies that  $n(K_{2,3}, H) + 2n(U_5, H) \ge 17$ . By the observation in Case (i), H must contain at least four  $C_4^*$ , a contradiction. Therefore, H contains a  $K_{2,2,2}$  as subgraph. Since H is a 2-connected (m + 4, m + 11)-graph and  $K_{2,2,2}$  is a 2-connected (6,12)-graph, by Theorem 1 and Lemma 3,  $K_{2,2,2}^i(m)$  is  $\chi$ -unique for  $m \ge 3$  and i = 1, 2. The proof is thus complete.  $\Box$ 

*Remark.* The chromatic uniqueness of  $K_{2,2,2}^1(m)$ ,  $m \ge 3$  has also been established by the authors in [2].

# **K<sub>2,2,2</sub> WITH AN EDGE DELETED**

Let  $G_1$  and  $G_2$  be graphs, each containing a complete subgraph  $K_p$  with p vertices. If G is the graph obtained from  $G_1$  and  $G_2$  by identifying the two subgraphs  $K_p$ , then G is called a  $K_p$ -gluing of  $G_1$  and  $G_2$ .

Let  $G^{(0)}$  be a given graph which is  $K_p$ -gluing of some graphs, say  $G_1$  and  $G_2$ . Forming another  $K_p$ -gluing of  $G_1$  and  $G_2$ , we obtain a new graph  $G^{(1)}$ . Note that  $G^{(1)}$  may not be isomorphic to  $G^{(0)}$ . Clearly,  $G^{(1)}$  is a  $K_p$ -gluing of some graphs, say  $H_1$  and  $H_2$ . Note that  $H_1$  and  $H_2$  may not be  $G_1$  and  $G_2$ . Forming another  $K_p$ -gluing of  $H_1$  and  $H_2$ , we obtain another graph  $G^{(2)}$ . The process of forming  $G^{(1)}$  from  $G^{(0)}$  (or  $G^{(2)}$  from  $G^{(1)}$ ) is called an *elementary operation*. A graph H is called a *relative* of G if H can be obtained from G by applying a finite sequence of elementary operations. Note that if H is a relative of G, then  $H \sim G$ .

Let  $K_{2,2,2}$  - *e* denote the graph obtained by deleting an edge of  $K_{2,2,2}$ . Consider a graph *H* obtained from  $G \cup P_m$  by identifying the two end vertices of  $P_m$  to two different vertices of *G*, where *G* is either ( $K_{2,2,2}$  - *e*) or  $K_{1,2,3}$ . Then the graph *H* must be one of the graphs  $G_i(m)$ ,  $1 \le i \le 7$  (or their relatives) as shown in Figure 1.



Figure 1: Graphs obtained from  $K_{2,2,3} - e$  or  $K_{1,2,3}$ 

Note that for m = 3, 4, the graphs  $G_i$  are  $\chi$ -unique if and only if i = 1, m = 4 (see [4]). Thus, we only consider the graphs  $G_i$  for  $m \ge 5$ .

*Theorem 3:*  $P(G_i) \neq P(G_j)$  for  $1 \le i \le j \le 4$ . Also,  $P(G_2) = P(G_5)$ ,  $P(G_3) = P(G_6)$  and  $P(G_4) = P(G_7)$ .

*Proof:* We first note that  $P(K_{2,2,2} - e) = \lambda(\lambda - 1)(\lambda - 2)(\lambda^3 - 8\lambda^2 + 23\lambda - 23) = P(K_{1,2,3})$ . By Lemma 3, we have

(1)  $P(G_1) = P(G_4) + (-1)^{m-1} P(K_4) P(K_4) / P(K_3) = P(G_4) + (-1)^{m-1} \lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)^2.$ (2)  $P(G_2) = P(G_4) + (-1)^{m-1} P(W_5) = P(G_4) + (-1)^{m-1} \lambda(\lambda - 1)(\lambda - 2)(\lambda^2 - 5\lambda + 7).$ (3)  $P(G_3) = P(G_4) + (-1)^{m-1} P(K_3) P(K_3) P(K_3) / P(K_2) P(K_2) = P(G_4) + (-1)^{m-1} \lambda(\lambda - 1)(\lambda - 2)^3.$ (4)  $P(G_4) = P(K_{2,2,2} - e) P(C_m) / P(K_2) = P(K_{1,2,3}) P(C_m) / P(K_2) = P(G_7).$ (5)  $P(G_5) = P(G_7) + (-1)^{m-1} P(W_5).$ (6)  $P(G_6) = P(G_7) + (-1)^{m-1} P(K_3) P(K_3) P(K_3) / P(K_2) P(K_2).$ 

Theorem 4: For  $m \ge 5$ , the graphs  $G_1(m)$  is  $\chi$ -unique and  $H \in [G_i(m)]$ , i = 2, 3, 4 if and only if  $H = G_i$  or  $G_{i+3}$  (or their relatives).

*Proof:* Let *G* be a graph as defined in the theorem. Suppose  $H \sim G$ , then *H* is a 2-connected graph on *m* + 4 vertices and *m* + 10 edges. Note that by Lemma 1,  $n(K_3, G) = n(K_3, H) = 6$ ,  $n(C_4^*, G) = n(C_4^*, H) = 3$ . Furthermore,  $n(U_5, G_i) = n(W_5, G_i) = 2$ ,  $n(K_{2,3}, G_i) = 0$ ,  $n(C_5^*, G_i) \le 1$  for i = 1, 2, 3, 4 whereas  $n(U_5, G_i) = 0$ ,  $n(W_5, G_i) = 3$ ,  $n(K_{2,3}, G_i) = 1$ ,  $n(C_5^*, G_i) \le 1$  for i = 5, 6, 7. By Lemma 1, it follows that

$$n(K_{2,3},H) + 2n(U_5,H) + 3n(W_5,H) \ge n(C_5^*,H) + 9 \ge 9.$$
(4)

We claim that *H* has exactly two or three  $W_5$ . Suppose otherwise. Then *H* must have (i) at least four  $W_5$  or (ii) at most one  $W_5$ .

Case (i) H has at least four  $W_5$ .

In this case, we note that H contains at least seven  $K_3$  no matter how the  $W_5$  overlap on each other, a contradiction.

Case (ii) H has at most one  $W_5$ . We consider two cases.

<u>Subcase (a)</u> If *H* has exactly one  $W_5$ , by Equation (4), this implies that  $n(K_{2,3}, H) + 2n(U_5, H) \ge 6$ . If  $n(K_{2,3}, H) \ge 2$ , then  $n(C_4^*, H) \ge 5$ , a contradiction. Therefore,  $n(K_{2,3}, H) \le 1$  which implies that  $n(U_5, H) \ge 3$ . Since all the  $U_5$  cannot be subgraphs of the  $W_5$  (see Theorem 2 of [3]), this further implies that  $n(C_4^*, H) \ge 4$ , a contradiction.

<u>Subcase (b)</u> If *H* has no  $W_5$ , by Equation (4), this implies that  $n(K_{2,3}, H) + 2n(U_5, H) \ge 9$ . By the observation in Subcase (a), *H* must contain at least four  $C_4^*$ , a contradiction.

Therefore, *H* contains two or three  $W_5$  as subgraph. In either case, all the  $W_5$  must overlap on a  $K_{1,1,2}$  (a  $C_4$  with a chord) to form a  $K_{2,2,2}$  - *e* or a  $K_{1,2,3}$ . Otherwise, *H* has at least seven  $K_3$ , a contradiction. Since *H* is a 2-connected (*m* + 4, *m* + 10)-graph and both  $K_{2,2,2}$  - *e* and  $K_{1,2,3}$  are 2-connected (6,11)-graph, by Theorems 1 and 3,  $G_1(m)$  is

 $\chi$ -unique and  $H \in [G_i(m)]$ , i = 2, 3, 4 if and only if  $H = G_i$  or  $G_{i+3}$  (or their relatives) for  $m \ge 5$ .

The proof is thus complete.  $\Box$ 

#### REFERENCES

- G.L. Chia and C.K. Ho. 2001. On the chromatic uniqueness of edge-gluing of complete bipartite graphs and cycles, Ars Combinat. 60: 193-199
- 2. G.L. Chia and C.K. Ho. 2003. On the chromatic uniqueness of edge-gluing of complete tripartite graphs and cycles, Bulletin of the Malaysian Mathematical Sc. Society, Vol. 26 No. 1: 87-92
- 3. E.J. Farrell. 1980. On chromatic coefficients, Discrete Math. 29: 257-264
- N.Z. Li. 1997. The list of chromatically unique graphs of order seven and eight, *Discrete Math.* 172: 193-221
- 5. R.C. Read. 1986. Broken wheels are SLC, Ars Combinat. 21A: 123-128
- E.G. Whitehead Jr. and L.C. Zhao. 1984. Cutpoints and the chromatic polynomial, J. Graph Theory 8: 371-377