CHROMATIC UNIQUENESS OF CERTAIN TRIPARTITE GRAPHS IDENTIFIED WITH A PATH

${ }^{1}$ G.C. Lau and ${ }^{2}$ Y.H. Peng
${ }^{1}$ Faculty of Information Technology and Quantitative Science
Universiti Teknologi MARA Cawangan Johor, Segamat, Johor
${ }^{2}$ Department of Mathematics and Institute for Mathematical Research
Universiti Putra Malaysia, 43400 Serdang, Selangor

Abstract: For a graph G, let $P(G)$ be its chromatic polynomial. Two graphs G and H are chromatically equivalent if $P(G)=P(H)$. A graph G is chromatically unique if $P(H)=P(G)$ implies that $H \cong G$. In this paper, we classify the chromatic classes of graphs obtained from $K_{2,2,2} \cup P_{m}(m \geq 3)$ (respectively, $\left(K_{2,2,2}-e\right) \cup P_{m}(m \geq 5)$ where e is an edge of $\left.K_{2,2,2}\right)$ by identifying the end vertices of the path P_{m} with any two vertices of $K_{2,2,2}$ (respectively, $K_{2,2,2}-e$). As a by-product of this; we obtained some families of chromatically unique and chromatically equivalent classes of graphs.

Keywords: Chromatic polynomial, Chromatically unique, Chromatically equivalent

INTRODUCTION

Let $P(G ; \lambda)$ (or $P(G)$) denote the chromatic polynomial of a simple graph G. Two graphs G and H are chromatically equivalent (χ-equivalent), denoted $G \sim H$, if $P(G)=P(H)$. A graph G is chromatically unique (χ-unique) if $P(H)=P(G)$ implies that $H \cong G$. The equivalence class determined by G under ~ is denoted by $[G]$. Let $\chi(G),|V(G)|,|E(G)|$ be the chromatic number, the number of vertices and the number of edges of G, respectively. Then the cyclomatic number of G is $|E(G)|-V(G) \mid+1$.

Let K_{n}, C_{n} and P_{n} denote a complete graph, a cycle and a path, respectively on n vertices. The complete t-partite graph whose t partite sets have $r_{1}, r_{2}, \ldots, r_{t}$ vertices is denoted by $K_{r_{1}, r_{2}, \ldots, r_{t}}$. Let $G \cup_{2} H$ denote any graph obtained by overlapping an edge of G and H (or edge-gluing of G and H). It is shown in [1,2] that $K_{2, s} \cup_{2} C_{\mathrm{m}}$ and $K_{2,2,2} \cup_{2} C_{\mathrm{m}}$ are χ-unique for all $s \geq 1, m \geq 3$. In this paper, we classify the chromatic classes of graphs obtained from $K_{2,2,2} \cup P_{m}(m \geq 3)$ (respectively, $\left(K_{2,2,2}-e\right) \cup P_{m}(m \geq 5)$ where e is an edge of $K_{2,2,2}$) by identifying the end vertices of the path P_{m} with any two vertices of $K_{2,2,2}$ (respectively, $K_{2,2,2}-e$). As a by-product of this, we obtained some families of chromatically unique and chromatically equivalent classes of graphs.

Throughout this paper, all graphs are assumed to be connected unless stated otherwise. Let G be a graph and let A be a subgraph of G. Let $n(A, G)$ denote the number of subgraphs A in G. Let W_{n} denote the wheel (obtained by joining a vertex to every vertex of C_{n-1}) of order $n \geq 4$. Also let U_{n} denote the graph obtained from W_{n} by deleting a spoke of W_{n} and C_{n}^{*} denote a chordless cycle of n vertices. If G has n vertices and m edges, we say G is an (n, m)-graph.

The following are some useful known results needed for determining the chromatic uniqueness of a graph.

Lemma 1 ([3]) Let G and H be two graphs such that $G \sim H$. Then G and H have the same number of vertices, edges and triangles. If both G and H has no K_{4} as subgraph, then $n\left(C_{4}^{*}, G\right)=n\left(C_{4}^{*}, H\right)$. Moreover,
$-n\left(C_{5}^{*}, G\right)+n\left(K_{2,3}, G\right)+2 n\left(U_{5}, G\right)+3 n\left(W_{5}, G\right)=-n\left(C_{5}^{*}, H\right)+n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right)+3 n\left(W_{5}, H\right)$.
Lemma 2 ([6]) Let G be a graph, then G contains a cut-vertex if and only if $(\lambda-1)^{2} \mid P(G)$.
Lemma 2 implies that if $H \sim G$, then H is 2 -connected if and only if G is also 2 -connected.

Let H be a nonempty graph with two nonadjacent vertices u and v. Let T (respectively, R) be any graph obtained by identifying the end-vertices of a path $P_{m}, m \geq 3$ with the vertices u and v (respectively, with any two adjacent vertices) of H. That is, $R=H \cup_{2} C_{m}$. Let H^{*} be the graph obtained from H by identifying the two vertices u and v of H.

Lemma 3 ([5]) $P(T)=P(R)+(-1)^{m-1} P\left(H^{*}\right)$.
We also need the following theorem to prove our main results.
Theorem 1: Let G be a 2-connected graph such that $|E(G)|-|V(G)|=k$. If G contains a connected subgraph F such that $|E(F)|-|V(F)|=k-1$, then G must be the graph obtained from F by identifying the end vertices of a path $P_{m}, m=|V(G)|-|V(F)|+2$ with two distinct vertices of F.

Proof: Since G contains F, we let $Y=G-F$ and assume that there are e edges joining Y to F. Now note that $|E(Y)|=|E(G)|-|E(F)|-e$ and $|V(Y)|=|V(G)|-|V(F)|$ so that

$$
\begin{equation*}
|E(Y)|-|V(Y)|=|E(G)|-|V(G)|-(|E(F)|-|V(F)|)-e=1-e . \tag{1}
\end{equation*}
$$

Let $Y_{1}, Y_{2}, \ldots, Y_{j}, j \geq 1$ be the connected components of Y. Suppose there are e_{i} edges joining F and Y_{i}, $i=1, \ldots, j$ so that $e=\sum_{i=1}^{j} e_{i}$. Let c_{i} denote the cyclomatic number of $Y_{i}, i=1, \ldots, j$. Let $c=$ $\sum_{i=1}^{j} c_{i}$. Using Equation (1) and from the definition of cyclomatic number, we have

$$
\begin{equation*}
c=\sum_{i=1}^{j} c_{i}=1-e+j \tag{2}
\end{equation*}
$$

Since G is 2 -connected, we have $e \geq 2 j$. Hence, Equation (2) implies that $c \leq 1-j$. Since $c \geq 0$, it follows that $j=1$ and $c=0$. Consequently, $e=2$ and $Y=Y_{1}$ must be the path $P_{m}, m=|V(G)|-|V(F)|+$ 2 whose end vertices are identified to two distinct vertices of F. \square

COMPLETE TRIPARTITE GRAPH K ${ }_{2,2,2}$

In what follow, we let $K_{2,2,2}^{1}(m)$ (respectively $K_{2,2,2}^{2}(m)$) denote the graph obtained from $K_{2,2,2} \cup$ P_{m} by identifying the end vertices of the path $P_{m}, m \geq 3$ with two adjacent (respectively, ron-adjacent) vertices of $K_{2,2,2}$.

Theorem 2: The graph $K_{2,2,2}^{i}(m)$ is χ-unique for $m \geq 3$ and $i=1,2$.

Proof: Suppose $H \sim J \in\left\{K_{2,2,2}^{i}(m), i=1,2\right\}$, then H is a 2 -connected graph on $m+4$ vertices and m +11 edges. Since the graphs $K_{2,2,2}^{i}(m), i=1,2$ are χ-unique for $m=3,4$ (see [4]), we may assume m ≥ 5. Note that by Lemma $1, n\left(K_{3}, J\right)=n\left(K_{3}, H\right)=8, n\left(C_{4}^{*}, J\right)=n\left(C_{4}^{*}, H\right)=3$. Furthermoee, $n\left(W_{5}, J\right)=$ 6, $n\left(C_{5}^{*}, J\right) \leq 1, n\left(K_{2,3}, J\right)=n\left(U_{5}, J\right)=0$. By Lemma 1, it follows that

$$
\begin{equation*}
n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right)+3 n\left(W_{5}, H\right) \geq n\left(C_{5}^{*}, H\right)+17 \geq 17 \tag{3}
\end{equation*}
$$

We first note that a $K_{2,2,2}$ contains six W_{5}. We now claim that H contains at least six W_{5} that forms a $K_{2,2,2}$. Suppose H does not contain a $K_{2,2,2}$. Note that any multipartite graph with a triangle and no K_{4} is also a tripartite graph. Since $\chi(H)=3, H$ has a triangle and no K_{4}. Hence, H is also a tripartite graph. So H must contain (i) a $K_{1,2,2}=W_{5}$ or (ii) no $K_{1,2,2}$.

Case (i) H contains a $K_{1,2,2}$.

In this case, we note that H contains at most three $K_{1,2,2}$ (that do not overlap on a C_{4}^{*}). Otherwise, H must contain at least nine triangles or four C_{4}^{*} no matter how all the $K_{1,2,2}$ overlap on each other, a contradiction. By Equation (3), this implies that $n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right) \geq 8$. If $n\left(K_{2,3}, H\right) \geq 2$, then $n\left(C_{4}^{*}, H\right) \geq 4$, a contradiction. Therefore, $n\left(K_{2,3}, H\right) \leq 1$ which implies that $n\left(U_{5}, H\right) \geq 4$. This further implies that $n\left(C_{4}^{*}, H\right) \geq 4$, a contradiction.

Case (ii) H contains no $K_{1,2,2}$.
This implies that $n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right) \geq 17$. By the observation in Case (i), H must contain at least four C_{4}^{*}, a contradiction. Therefore, H contains a $K_{2,2,2}$ as subgraph. Since H is a 2 -connected ($m+4, m+$ 11)-graph and $K_{2,2,2}$ is a 2-connected $(6,12)$-graph, by Theorem 1 and Lemma 3, $K_{2,2,2}^{i}(m)$ is χ unique for $m \geq 3$ and $i=1,2$. The proof is thus complete.

Remark. The chromatic uniqueness of $K_{2,2,2}^{1}(m), m \geq 3$ has also been established by the authors in [2].

$K_{2,2,2}$ WITH AN EDGE DELETED

Let G_{1} and G_{2} be graphs, each containing a complete subgraph K_{p} with p vertices. If G is the graph obtained from G_{1} and G_{2} by identifying the two subgraphs K_{p}, then G is called a K_{p}-gluing of G_{1} and G_{2}.

Let $G^{(0)}$ be a given graph which is K_{p}-gluing of some graphs, say G_{1} and G_{2}. Forming another K_{p}-gluing of G_{1} and G_{2}, we obtain a new graph $G^{(1)}$. Note that $G^{(1)}$ may not be isomorphic to $G^{(0)}$. Clearly, $G^{(1)}$ is a K_{p}-gluing of some graphs, say H_{1} and H_{2}. Note that H_{1} and H_{2} may not be G_{1} and G_{2}. Forming another K_{p}-gluing of H_{1} and H_{2}, we obtain another graph $G^{(2)}$. The process of forming $G^{(1)}$ from $G^{(0)}$ (or $G^{(2)}$ from $G^{(1)}$) is called an elementary operation. A graph H is called a relative of G if H can be obtained from G by applying a finite sequence of elementary operations. Note that if H is a relative of G, then $H \sim G$.

Let $K_{2,2,2}-e$ denote the graph obtained by deleting an edge of $K_{2,2,2}$. Consider a graph H obtained from $G \cup P_{m}$ by identifying the two end vertices of P_{m} to two different vertices of G, where G is either ($K_{2,2,2}$ $-e$) or $K_{1,2,3}$. Then the graph H must be one of the graphs $G_{i}(m), 1 \leq i \leq 7$ (or their relatives) as shown in Figure 1.

Note that for $m=3,4$, the graphs G_{i} are χ-unique if and only if $i=1, m=4$ (see [4]). Thus, we only consider the graphs G_{i} for $m \geq 5$.

Theorem 3: $P\left(G_{i}\right) \neq P\left(G_{j}\right)$ for $1 \leq i<j \leq 4$. Also, $P\left(G_{2}\right)=P\left(G_{5}\right), P\left(G_{3}\right)=P\left(G_{6}\right)$ and $P\left(G_{4}\right)=P\left(G_{7}\right)$.
Proof: We first note that $P\left(K_{2,2,2}-e\right)=\lambda(\lambda-1)(\lambda-2)\left(\lambda^{3}-8 \lambda^{2}+23 \lambda-23\right)=P\left(K_{1,2,3}\right)$. By Lemma 3, we have
(1) $P\left(G_{1}\right)=P\left(G_{4}\right)+(-1)^{m-1} P\left(K_{4}\right) P\left(K_{4}\right) / P\left(K_{3}\right)=P\left(G_{4}\right)+(-1)^{m-1} \lambda(\lambda-1)(\lambda-2)(\lambda-3)^{2}$.
(2) $P\left(G_{2}\right)=P\left(G_{4}\right)+(-1)^{m-1} P\left(W_{5}\right)=P\left(G_{4}\right)+(-1)^{m-1} \lambda(\lambda-1)(\lambda-2)\left(\lambda^{2}-5 \lambda+7\right)$.
(3) $P\left(G_{3}\right)=P\left(G_{4}\right)+(-1)^{m-1} P\left(K_{3}\right) P\left(K_{3}\right) P\left(K_{3}\right) / P\left(K_{2}\right) P\left(K_{2}\right)=P\left(G_{4}\right)+(-1)^{m-1} \lambda(\lambda-1)(\lambda-2)^{3}$.
(4) $P\left(G_{4}\right)=P\left(K_{2,2,2}-e\right) P\left(C_{m}\right) / P\left(K_{2}\right)=P\left(K_{1,2,3}\right) P\left(C_{m}\right) / P\left(K_{2}\right)=P\left(G_{7}\right)$.
(5) $P\left(G_{5}\right)=P\left(G_{7}\right)+(-1)^{m-1} P\left(W_{5}\right)$.
(6) $P\left(G_{6}\right)=P\left(G_{7}\right)+(-1)^{m-1} P\left(K_{3}\right) P\left(K_{3}\right) P\left(K_{3}\right) / P\left(K_{2}\right) P\left(K_{2}\right)$.

Theorem 4: For $m \geq 5$, the graphs $G_{1}(m)$ is χ-unique and $H \in\left[G_{i}(m)\right], i=2,3,4$ if and only if $H=G_{i}$ or G_{i+3} (or their relatives).

Proof: Let G be a graph as defined in the theorem. Suppose $H \sim G$, then H is a 2-connected graph on m +4 vertices and $m+10$ edges. Note that by Lemma 1, $n\left(K_{3}, G\right)=n\left(K_{3}, H\right)=6, n\left(C_{4}^{*}, G\right)=n\left(C_{4}^{*}, H\right)=$ 3. Furthermore, $n\left(U_{5}, G_{i}\right)=n\left(W_{5}, G_{i}\right)=2, n\left(K_{2,3}, G_{i}\right)=0, n\left(C_{5}^{*}, G_{i}\right) \leq 1$ for $i=1,2,3,4$ whereas $n\left(U_{5}, G_{i}\right)$ $=0, n\left(W_{5}, G_{i}\right)=3, n\left(K_{2,3}, G_{i}\right)=1, n\left(C_{5}^{*}, G_{i}\right) \leq 1$ for $i=5,6,7$. By Lemma 1, it follows that

$$
\begin{equation*}
n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right)+3 n\left(W_{5}, H\right) \geq n\left(C_{5}^{*}, H\right)+9 \geq 9 . \tag{4}
\end{equation*}
$$

We claim that H has exactly twe or three W_{5}. Suppose otherwise. Then H must have (i) at least four W_{5} or (ii) at most one W_{5}.

Case (i) H has at least four W_{5}.
In this case, we note that H contains at least seven K_{3} no matter how the W_{5} overlap on each other, a contradiction.

Case (ii) H has at most one W_{5}. We consider two cases.
Subcase (a) If H has exactly one W_{5}, by Equation (4), this implies that $n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right) \geq 6$. If $n\left(K_{2,3}, H\right) \geq 2$, then $n\left(C_{4}^{*}, H\right) \geq 5$, a contradiction. Therefore, $n\left(K_{2,3}, H\right) \leq 1$ which implies that $n\left(U_{5}\right.$, $H) \geq 3$. Since all the U_{5} cannot be subgraphs of the W_{5} (see Theorem 2 of [3]), this further implies that $n\left(C_{4}^{*}, H\right) \geq 4$, a contradiction.

Subcase (b) If H has no W_{5}, by Equation (4), this implies that $n\left(K_{2,3}, H\right)+2 n\left(U_{5}, H\right) \geq 9$. By the observation in Subcase (a), H must contain at least four C_{4}^{*}, a contradiction.

Therefore, H contains two or three W_{5} as subgraph. In either case, all the W_{5} must overlap on a $K_{1,1,2}$ (a C_{4} with a chord) to form a $K_{2,2,2}-e$ or a $K_{1,2,3}$. Otherwise, H has at least seven K_{3}, a contradiction. Since H is a 2 -connected ($m+4, m+10$)-graph and both $K_{2,2,2}-e$ and $K_{1,2,3}$ are 2-connected (6,11)-graph, by Theorems 1 and $3, G_{1}(m)$ is χ-unique and $H \in\left[G_{i}(m)\right], i=2,3,4$ if and only if $H=G_{i}$ or G_{i+3} (or their relat ves) for $m \geq 5$.

The proof is thus complete.

REFERENCES

1. G.L. Chia and C.K. Ho. 2001. On the chromatic uniqueness of edge-gluing of complete bipartite graphs and cycles, Ars Combinat. 60: 193-199
2. G.L. Chia and C.K. Ho. 2003. On the chromatic uniqueness of edge-gluing of complete tripartite graphs and cycles, Bulletin of the Malaysian Mathematical Sc. Society, Vol. 26 No. 1: 87-92
3. E.J. Farrell. 1980. On chromatic coefficients, Discrete Math. 29: 257-264
4. N.Z. Li. 1997. The list of chromatically unique graphs of order seven and eight, Discrete Math. 172: 193-221
5. R.C. Read.1986. Broken wheels are SLC, Ars Combinat. 21A: 123-128
6. E.G. Whitehead Jr. and L.C. Zhao. 1984. Cutpoints and the chromatic polynomial, J. Graph Theory 8: 371-377
