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Abstract: For a graph G, let P(G) be its chromatic polynomial. Two graphs G and A are chromatically
equivalent if P(G) = P{(H). A graph G is chromatically unique if P(H) = P(G) implies that # = G. In
this paper, we classify the chromatic classes of graphs obtained from K, ,,w P, (m = 3) (respectively,
(K222 - €) U P, (m=5) where e is an edge of K, ) by identifying the end vertices of the path P, with
any two vertices of K,,, (respectively, K,2, - €). As a by-product of this; we obtained some families
of chromatically unique and chromatically equivalent classes of graphs.
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INTRODUCTION

Let P(G; A) (or P((7)) denote the chromatic polynomial of a simple graph G. Two graphs G and / are
chromatically equivalent (-equivalent), denoted G ~ H, if P(G) = P(H). A graph G is chromatically
unique (y-unique) if P(F1) = P(G) implies that H = G. The equivalence class determined by G under ~
is denoted by [G]. Let y(G), |V (G)], |E(G)| be the chromatic number, the number of vertices and the
number of edges of G, respectively. Then the cyclomatic number of G is |E(G)| - V (G)|+ 1.

Let K, C, and P, denote a complete graph, a cycle and a path, respectively on » vertices. The complete
t-partite graph whose ¢ partite sets have 71, ry, . . ., 7 vertices is denoted by K, . .. Let Gy H
denote any graph obtained by overlapping an edge of G and /7 (or edge-gluing of G and H). It is shown
in [1, 2] that K, W, C, and K555, Cy are y-unique for all s > 1,m > 3. In this paper, we classify the
chromatic classes of graphs obtained from K,,, U P,, (m = 3) (respectively, (Ky., - €) v P, (m 2 5)
where e is an edge of £, ) by identifying the end vertices of the path 7, with any two vertices of K5,

(respectively, K2, - €). As a by-product of this, we obtained some families of chromatically unique
and chromatically equivalent classes of graphs.

Throughout this paper, all graphs are assumed to be connected unless stated otherwise. Let G be a
graph and let 4 be a subgraph of G. Let n(4, G) denote the number of subgraphs 4 in G. Let ¥, denote
the wheel (obtained by joining a vertex to every vertex of €, ;) of order n = 4. Also let U, denote the

graph obtained from J7, by deleting a spoke of W, and (' : denote a chordless cycle of n vertices. If G
has n vertices and m edges, we say G is an (»,m)-graph.

The following are some useful known results needed for determining the chromatic uniqueness of a
graph.

Lemma 1 ([3]) Let G and H be two graphs such that G ~ H. Then G and H have the same number of
vertices, edges and triangles. If both G and H has no K, as subgraph, then n(C ; , G =n(C ; s 1),
Moreover,

n(Cy, Gy +n(Kas, G) + 2n(Us, G) +3n(Ws, G) = -n(C , Hy + n(Kys, H) + 2n(Us, H) + 3n(Ws, H)

Lemma 2 ([6]) Let G be a graph, then G contains a cut-vertex if and only if (A - D?|P(G).

Lemma 2 implies that if /7 ~ G, then /7 is 2-connected if and only if G is also 2-connected.
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Let / be a nonempty graph with two nonadjacent vertices » and v. Let 7 (respectively, R) be any graph
obtained by identifying the end-vertices of a path P,, m 2 3 with the vertices v and v (respectively, with
any two adjacent vertices) of //. That is, R = H u, C,. Let H* be the graph obtained from H by
identifying the two vertices v and v of H.

Lemma 3 ([S]) P(T) = P(R) + (-1)™' P(H*).

We also need the following thcorem to prove our main results.

Theorem 1: Let G be a 2-connected graph such that |E(G)| - |V (G)| = k. If G contains a connected
subgraph F such that |E(F)| - [V (F)| = k - 1, then G must be the graph obtained from F by identifying

the end vertices of a path P,,, m = |V (G)| - |V (£)| + 2 with two distinct vertices of F.

Proof: Since G contains F, we let Y = G -~ I and assume that there are ¢ edges joining Y to . Now note
that |[E(Y )| = [E(G)| - |EGR)| - e and |V (Y)| = [V (G)] - [V ()] 50 that

EQ)] -V (DI =EG)] - V(O - (EE)] -V I -e=1-e. (1)
Let 11, Yo, ..., Y, j = 1 be the connected components of ¥ . Suppose there are e, edges joining Fand Y,
i=1,...,jsothate= ! e. . Let c¢; denote the cyclomatic number of ¥;, i=1, ...,/ Letc=

=) *

ZJ Ci - Using Equation (1) and from the definition of cyclomatic number, we have
=

J 5
c=) ¢ =l-e+j. 2)

Since G is 2-connected, we have e = 2. Hence, Equation (2) implies that ¢ < 1 - . Since ¢ > 0, it
follows that j = 1 and ¢ = 0. Consequently, e = 2 and Y = ¥; must be the path P, m = |V (G)| - [V (I)| +
2 whose end vertices are identified to two distinct vertices of /. [

COMPLETE TRIPARTITE GRAPHK,,

In what follow, we let K ;,2,2 (m) (respectively K 22)2,2 (m) ) denote the graph obtained from K, U

P,, by identifying the end vertices of the path 7, m > 3 with two adjacent (respectively, ron-adjacent)
vertices of K3 55.

Theorem 2: The graph K£,2,2 (m) is y-unique form >3 andi=1, 2.

1

Proof: Suppose I ~J € { Kz.z.z (m),i=1,2}, then H is a 2-connected graph on m + 4 vartices and m
+ 11 edges. Since the graphs K, , , (m) i = 1, 2 are y-unique for m = 3, 4 (see [4]), we may assume
> 5. Note that by Lemma 1, (K. J) = n(K5, H) = 8, n((,':, Jy=n(C;, H)=3. Furthermore, n(Ws, J) =

6, n( C; , N <1, n(Ky;, J)y=n(l/s, J) = 0. By Lemma 1, it follows that

1Ko, H) + 20(Us H) + 3n(Ws,H) > n(C: H) + 172 17. 3)

We first note that a K, contains six #s. We now claim that / contains at least six I¥’s that forms a
K52, Suppose /1 does not contain a K3 > >. Note that any multipartite graph with a triangle and no K, is
also a tripartite graph. Since (/) = 3, H has a triangle and no K. Hence, /1 is also a triparlite graph. So
H must contain (i) a Ky 5, = W5 or (ii) no K, »».
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Case (i) /7 contains a K 5.

In this case, we note that /7 contains at most three K , (that do not overlap on a : ). Otherwise, H

must contain at least nine triangles or four C: no matter how all the K 5, oVérlab on each other, a

contradiction. By Equation (3), this implies that n(Ky3,/7) + 2n(Us,H) = 8. If n(K,3,H) > 2, then
2 i o 2 , ; i v %

n(C, ,H) > 4, a contradiction. Therefore, n(K,3,H) < 1 which implies that n(Us, ) > 4. This further

implies that n(C : ,H) = 4, a contradiction.
Case (i) A contains no K7 ;5.

This implies that n(K, 5, /1) + 2n(Us,H) 2 17. By the observation in Case (i), // must contain at least four

C: , a contradiction. Therefore, // contains a K, as subgraph. Since # is a 2-connected (m + 4,m +
11)-graph and K,,, is a 2-connected (6,12)-graph, by Theorem 1 and Lemma 3, K;‘z.z (m) is -

unique for m = 3 and i = 1, 2. The proof is thus complete. []

Remark. The chromatic uniqueness of K ;_2)2 (m), m = 3 has also been established by the authors in

2]
K,2, WITH AN EDGE DELETED

Let (G; and G, be graphs, each containing a complete subgraph K, with p vertices. If G is the graph
obtained from G, and (7, by identifying the two subgraphs X, then G is called a K,-g/uing of (7, and

Go.

Let G be a given graph which is K,-gluing of some graphs, say G; and G,. Forming another K,-gluing
of G, and G-, we obtain a new graph G'”. Note that G may not be isomorphic to G'”. Clearly, G™ is
a K,-gluing of some graphs, say /4, and /,. Note that //; and /7, may not be G;; and G,. Forming
another K ,-ghuing of /7, and /,, we obtain another graph G The process of forming G from G’ (or
G® from G") is called an elementary operation. A graph [ is called a relative of G if H can be
obtained from G by applying a finite sequence of elementary operations. Note that if / is a relative of
G, then H ~ G.

Let K, 25 - e denote the graph obtained by deleting an edge ot K, ,. Consider a graph /1 obtained from
G v P, by identifying the two end vertices of 7, to two different vertices of GG, where G is either (K,

- ¢) or Ky 53. Then the graph /7 must be one of the graphs G,(m), 1 <i <7 (or their relatives) as shown
in Figure 1.
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Note that for m = 3, 4, the graphs G; are y-unique if and only if 7 = 1,;m = 4 (see [4]). Thus, we only
consider the graphs G, for m = 5.

Theorem 3: P(G;) # P(G)) for | <i <j <4 Also, P(Gy) = P(Gs), P(G3) = P(Gs) and P(Gy) = P(G5).

Proof: We first note that P(K, 5 - €) = A(h = 1)(A - 2)( A7 - 812 + 23 - 23) = P(K; ,5). By Lemma 3, we
have

(1) P(Gy) = P(Gy) + (-1)™' P(K)P(K)/P (K3) = P(Ga) + (-1)™ Ak - D( A - 2)( - 3)

(2) P(Gy) = P(Gg) + (1)Y™'P(W5) = P(Gg) + (-1)™ A (A - 1)(A - 2)(A2 - 50+ 7).

(3) P(Gs3) = P(Ga) + (-1)™ P(K3)P(K3)P(K) / P(K)P(K3) = P(Ga) + (-1)"" (L - (- 2)°.
(@) P(Gq) = P(K222 - e)P(Cpr)/P (K2) = P(Ki 23)P(C) / P(K3) = P(Gy).

(5) P(Gs) = P(Gy) + (-1)™' P(W5).

(6) P(Gg) = P(Gy) + (-1)" ' P(K3)P(K3)P(K3) / P(K2)P(Ky).

Theorem 4: For m 2 5, the graphs (z(m) is y-unique and [ e [G,(m)], i =2, 3, 4 ifand only if H= G,
or Gz (or their relatives).

Proof: Let G be a graph as defined in the theorem. Suppose /7 ~ G, then /] is a 2-connected graph on m
+ 4 vertices and m + 10 edges. Note that by Lemma 1, n(K3,G) = n(Ks, H) = 6, n(C: ,G) = n(C;,H) =

3. Furthermore, n(Us, G,) = n(Ws,G,)) = 2, n(K54,G,) =0, n( C:,G,) <lfori=1,2,3, 4 whereas n(Us,G,)
=0, n(Ws,G)) =3, n(Ky5,G,) =1, n( C: ,G)<1fori=35,6, 7. By Lemma 1, it follows that

(K3, H) + 2n(Us H) + 3n(Ws, 1) 2 n(C{ H) + 9> 9, )

We claim that / has exactly twe or three Ws. Suppose otherwise. Then /7 must have (i) at least four s
or (ii) at most one .

Case (i) /{ has at least four Ws,

In this case, we note that / contains at least seven K3 no matter how the Ws overlap on e¢ach other, a
contradiction.
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Case (ii) /1 has at most one Ws. We consider two cases.

Subcase (a) If # has exactly one W5, by Equation (4), this implies that n(K, 3, /) + 2n(Us, H) = 6. If
n(Ky3, H) 2 2, then n( C:. H) = 5, a contradiction. Therefore, n(K 3, /{) < 1 which implies that n(Us,
H) = 3. Since all the Us cannot be subgraphs of the W5 (see Theorem 2 of [3]), this further implies that
n(C : , H) = 4, a contradiction.

Subcase (b) If / has no Ws, by Equation (4), this implies that n(Ky5, ) + 2n(Us, H) = 9. By the
observation in Subcase (a), // must contain at least four C: , a contradiction.

Therefore, / contains two or three 15 as subgraph. In either case, all the s must overlap ona K ; 5 (a
(', with a chord) to form a K35, - e or a K, , 3. Otherwise, /{ has at least seven K3, a contradiction. Since
H is a 2-connected (mm + 4, m + 10)-graph and both K, 5, - ¢ and K » 5 are 2-connected (6,11)-graph, by
Theorems 1 and 3, G,(m) is

y-unique and / € [Gi(m)], i =2, 3, 4 if and only if H = G; or G5 (or their relatives) for m > 5.

The proof is thus complete. 1
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