UNIVERSITI TEKNOLOGI MARA

THE BEST-FIT DISTRIBUTION MODEL OF WATER CONSUMPTION

NORIS ZAYYANI BINTI ISMAIL NURSHAFIQAH BINTI KHAIRI NUR ARIENA FASIHAH BINTI MOHD HAFIZ

BACHELOR OF SCIENCE (HONS.) STATISTICS FACULTY OF COMPUTER AND MATHEMATICAL SCIENCES

JULY 2019

ABSTRACT

Water is an essential part of human life. Water consumption means the freshwater that is taken from ground or surface water sources and transfer to the place of use. Recently, some of state in Malaysia faced a water crisis due to increase in demand, insufficient water supply, lack of river basin management and growth of population. Moreover, demanding for water consumption that increases per year will lead to the more serious problem in Malaysia. Water consumption research has been conducted for decades. A statistician needs to play their role in conducting a research related to the water consumption. Hence, this study aims to identify the best fitted distribution model for water consumption data. A secondary data that consisted of 221 different locations for year 2017 has been used in this study. Three distributions namely as normal, lognormal and loglogistic distributions have been used to model the water consumption data. Furthermore, the best parameters for each distribution has been estimated based on Maximum Likelihood Estimation (MLE) and Least Square Estimation (LSE) methods. Based on this study, it is found that LSE give the best parameter estimation for each distribution since the value of Mean Square (MSE) was smaller as compared to MLE. Anderson darling goodness of fit was used to determine the best fitted model for water consumption. Based on the comparison of the fitted model, it seems that loglogistic distribution give the better fit for water consumption data as compared to normal and lognormal distributions. The loglogistic showed the smallest Anderson darling value (AD=0.3720) with critical value (CV=2.5018) respectively. Therefore, the best fitted distribution found in this study can be used by water authorities in Malaysia to evaluate the level of water demand and forecast water consumption for the future.

ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

Firstly, we are grateful to Allah S.W.T for giving us the strength to complete this project successfully.

We would like to express our gratitude to our main supervisor, Madam Haslinda Binti Ab Malek for her valuable guidance and continuous support from the initial to the final level which enabled us to accomplish this research. She shows us different ways to approach a research problem and the need to be courage, incessant and patience to achieve our goal. Thank you for always reminds us for the thing that we overlooked, and thank you for being a great supervisor with a friendly touch. Your understanding is much indeed appreciated.

We would also like to dedicate this work to our families and friends who supported us in any aspect during the completion of the research. Their continuous support and du'a means a lot to us. Thank you for being with us, through ups and downs, and sharing the tears and laughs together.

NORIS ZAYYANI BINTI ISMAIL NURSHAFIQAH BINTI KHAIRI NUR ARIENA FASIHAH BINTI MOHD HAFIZ

TABLE OF CONTENTS

TOPIC	PAGE
ABSTRACT	i
ACKNOWLEDGEMENT	11
TABLE OF CONTENTS	111
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Research Questions	5
1.5	Scope and Limitation of Study	5
1.6	Significance of Study	5

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	6
2.2	The Distribution of Water Consumption	6
2.3	The Method of Parameter Estimation	8
2.4	Method of Model Selection	10

CHAPTER 3: METHODOLOGY

3.1	Introd	uction	14
3.2	Source	es of Data	14
3.3	The C	haracteristics of Water Consumption	14
3.4	Softwa	are Used	15
3.5	Method of Analysis		
	3.5.1	Descriptive Analysis	15
	3.5.2	Model Description	15
	3.5.3	Parameter Estimation	19
	3.5.4	Mean Square Error	22
	3.5.5	Model Selection	23

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1	Introd	uction	26
4.2	Descri	ptive Analysis	26
4.3	Parameter Estimation Using Method of Maximum		
	Likeli	hood Estimation (MLE) and Least Square	
	Estima	ation (LSE)	28
	4.3.1	Parameter Estimation of Normal	
		Distribution	29
	4.3.2	Parameter Estimation of Lognormal	
		Distribution	30
	4.3.3	Parameter Estimation of Loglogistic	
		Distribution	32
4.4	Mean	Square Error (MSE)	34
	4.4.1	MSE for Normal Distribution Using	
		MLE and LSE	35
	4.4.2	MSE for Lognormal Distribution Using	
		MLE and LSE	35
	4.4.3	MSE for Loglogistic Distribution Using	
		MLE and LSE	36
	4.4.4	Summary of Mean Square Error for	
		Normal, Lognormal and Loglogistic	
		Distribution	36
4.5	-	the Distributions	37
4.6		it Distribution Using Anderson	
	Darlin	g (AD)	38

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	39
5.2	Recommendations	39

REFERENCES	41
LIST OF APPENDICES	45