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ABSTRACT

The developments of some rigid mathematical criteria of symmetry are required in order to make the idea of a
molecular system as useful as possible. The first consideration was on the kinds of symmetry elements that a
molecule may have and the symmetry operations generated by the symmetry elements presented in symmetry

groups. The classification of finite symmetry groups in R® has important applications in crystallography. Many
chemical substances from crystals and their structures take the forms of crystalline lattices. This study present
the classification of chemistry point groups according to the seven crystal systems. The generators can be
described in terms of chemistry point groups’ elements or abstract symmetry group elements accordingly. By
using GAP, the possible relations between the set of generators and the finite representations for corresponding
abstract groups of crystallographic point groups were determined. From the r:sult of finite presentations of
abstract symmelry groups, the generators and relations of chemistry point groups can be described using the
symmetry elements of point groups.
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Introduction

Symmetry groups play a main role in chemistry, especially in molecular vibration (Cotton, 1990). Vibration
modes of benzene (Wilson, 1934), methyl acetylene (Meister et. al, 1943), water (Sarmin & Mohamad, 2004),
and ammonia (Sarmin et. al/, 2004) are examples that can be treated quite simply by group theory. Symmetry
groups are the groups that are most often encountered by most chemists and by many physicists. The point group
theory (and symmetry) provides the mathematical basis for interpretation of the spectra of molecules. The
various vibration modes of a molecule can be categorized in terms of their behavior with respect to the symmetry
elements of the molecule. Classification of point groups, group representations, character tables and structure can
have physical meanings to chemists and physicists.

Finite rotation groups of rigid bodies and crystallographic point groups which are also known as lattice
point groups or point groups in chemistry, are two types of symmetry point groups. A finite symmetry point
group cannot contain translations, glides or screws and so arguing as before, such a group must fix some point
which we may as well considered as the origin. This study will classified the idgroup, generators and relation in
order to determine the finite representation group of seven holohedry

32 Crystallographic Point Groups

There are at least 32 point groups in chemistry which can be used to determine the finite symmetry subgroups of
Sym, using the isomorphic relation. Gilbert (2004) shows this classification of finite symmetries in R® has

important application in crystallography. Many chemical substances from crystal and their structure take the
form of crystalline lattices. A crystal lattice is always finite, but in order to study its symmetries, we create a
mathematical model by extending this crystal lattice to infinity. Common salt form a cubic crystalline lattice has
the orthogonal vector of the same length. A subgroup of O(3) that leaves a crystalline lattice invariant is called
crystallographic point groups.

In three dimensions there are 32 such point groups, 30 of which are relevant to chemistry. Their
classification is based on the Schonflies notation. A crystal consist an ordered 3D repetition of a fundamental
unit (the asymmetric unit), which may be one molecule or several molecules (all the same of several kinds). This
order array consists of a large number of unit cells (effectively, an infinite number) that fit together to fill the
space and that are defined by three translation vectors. The point groups determine the classes of mathematically
possible lattice known as crystal system and it is conventional to divide the crystal classes into seven crystals
which are triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral or trigonal, hexagonal and cubic.
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In Hestenes (2002), a set of generators for each of the seven holohedry is determined and identified
with lattice vectors which are the symmetry vectors that generate the lattice. Since all the chemistry point groups

are subgroups of O, and D, , the generators of these crystallographic point groups can be generated from the

generators of O, and DD, . Geometry algebra also describes possible relation between the set of generators for

each of the seven diholohedry. We will determine the mapping between the elements in symmetric operations in
the crystallographic point groups to corresponding generators in certain crystal system.

Seven Crystal Systems

A crystal consists of an ordered 3D repetition of a fundamental unit (the asymmetric unit), which may be one
molecule or several molecules (all the same of several kinds). This order array consists of a large number of unit
cells (effectively, an infinite number) that fit together to fill space and that are defined by three translation
vectors. The termini of these vectors repeated over and over, form an array of points called the crystal lattice
(Cotton, 1990). There are seven crystal systems as listed in the following

a) Triclinic - The least symmetrical of the crystal systems. No face has the same dimensions as any
other and none of the faces is at right angles to any of the others.

b) Monoclinic - One of the most common crystal systems. No pair of faces is the same length,
breadth or height as any other.

¢) Orthorhombic - This system has flattened sides that look like table tops. The three faces are
unequal, but they are all at right angles to one another.

d) Tetragonal - This form is more elongated than the cube. The crystals have three faces at right
angles to one another, but only two are equal in length, breadth and height.

e) Rhombohedral or trigonal — Has three-dimensional shape that is similar to a cube that has been
compreesed to one side. Its form is considered prismatic, as all faces are parallel to each other. The
faces that are not square are called “rhombi”. A rhombohedral crystal has six faces or rhombi, 12
edges and 8 vertices. If all of the non-obtuse internal angles of the faces are equal, it can be called a
trigonal trarezohedron.

f) Hexagonal — Has four crystallographic axes consisting of three equal horizontal or equatorial axes
at120°, and one vertical axis that are perpendicular to the other three.

g) Cubic - Crystal that is essentially cube-shaped, like dice, with three pairs of sides the same length,
breadth and height. Some cubic crystals may have developed further into 8- or 12-sided shapes, but
these still belong to the cubic system. These crystals are also called isometric crystals.

The subdivision corresponds to an arrangement of the point groups into families of subgroups, as
indicated in Figure 1 and the largest group in each system is called holohedry of the system. In Hestenes (2002),
a set of generators for each of the seven holohedry is determined and identified with lattice vectors which are the

syminetry vectors that generate the lattice. Since all the chemistry point groups are subgroups of O,, and D6 hs

the generators of these crystallographic point groups can be generated from the generators of Oh and D, .

Geometry algebra also describes possible relation between the set of generators for each of the seven
diholohedry (the versor groups of the holohedry).

Relation of one system to another is described by the subgroup relations among the holohedry, as
shown in Figure 2. The point groups shown in each holohedry are the generators of each crystal systems. Table 1
has sets of such generators arranged to show the simple relations among them. Note that the orthogonal vectors
a, ¢ can be chosen to be the same for each system, and there are three distinct choices for the remaining vector b.

Actually from the generators for O, and D, the generators of all other crystallographic point groups can be

generated because all the groups are subgroups of 0,, and D6 1> as shown in Figure 1. We have determined all

possible point symmetry groups for 3-dimensional objects. However, an infinite number of different objects with
the same symmetry groups, for a symmetry group describe a relation among identical parts of an object without
saying anything about the nature of those parts (Hestenes, 2002).
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Order

48

24

16 tetragonal

12 trigonal

monoclinic

triclinic

Figure 2 Subgroup Relations for the Seven Holohedry or Crystal Systems

According to the Figure 2, each of the seven crystal system was generated by one of the point groups in
their crystal class. In Table 4.10, the generators of the point groups that represent each crystal class is given in
terms of vectors. Here we give the group theoretical representation of each of the holohedry groups using finite
presentation groups of its corresponding abstract group types. Since all the chemistry point groups are subgroups

of ()h and D6 ,» the generators of these crystallographic point groups can be generated from the generators of
Oh and D6h' The finite presentation group of the abstract group for D(,h can be applied to describe the

generators of D, and their properties.

Finite Representation Group

The idea of a group representation is to form a group by giving a set of generators for the group and certain
equation or relation that we want the generators to satisfy and want the group to be as free as it possibly can be
on the generators with these relations (Fraleigh, 2000). The finite representations for six crystal systems are
listed in Table 1. All of these finite representations were determined by using GAP. GAP stands for Groups,
Algorithms and Programming.But we are enabling to determine the finite presentation of the holohedry group

O, = Sym, x Z, using the usual procedures applied to the other holohedry groups.
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Table 1: Finite Representation for Generators of Crystal System

Crystal | Generator Absmact
System of Crystal Growp Finite Representation (G AP)
System

Triclinie C, Z, (a a? )

Monodlini Can Dih, (a b a=b'=¢,(ab) ' ba= e)
e
el - Dily x Z, G= (a,b,c @’ =b'=c’ =¢ab T ba=1acca= bc b= e>
bic

Trigonal Dy Dihg = DiyxZ,| G = <a,b,c at=ct=e (ab)"b_ac'2 =(ac) cac™ =e,(pc) b= bc = e>
Temggnal Dy, Dihy X2, G= (a,b,c,d at=ct=d*=ebc =¢ab tbac™ =, ac ca=ad da
=bci'ch=1bd "db=1cddc=e )

Hexagonal Dy, Dihy x 2, G= (a,b,c,d @t=c =ebct =erab M bac? =iac Ccac™ =
vad "'da = be Vb= bd Mab = 1cd Tde = )

Cubic O, Sym, x Z, =

Table 2: Finite Representation for Seven Crystal System

Crystal Generatol Abstract
Systetn of Crystal Group Finite Representation
System
Tnclinic ci 7o G:(a '_az =e>
Mmsiag | £, Dihy G={ab:a’ =b = e,ab=ba)
e N Dityx Z, G=lab,c:a’ =b? =c? =e;ab=bayac=ca;cd = dc)

Aigaet Dy  Dihg=DiyxZ,| G= <a,b,c:a2 =bS =eba=b’;bla= ab‘)

toegd | Dy DiyxZy | G=(abcd:a’=c' =d" =e;b’ = ciab=bajac = cajad = dasbe = cbibd = deiod = de )
Hexagoral Dy, DihgxZ, (a bed:a’=c® =e:b? =c;ba=abc® jca=>;ab=ba;ac= ca;ad = da;bc = ch;bd = db;cd = de
Cubic Oh Sym‘ )(Z2 _
Conclusion

The seven crystal systems for the 32 crystallographic point groups as listed are classified in terms of the unit cell
dimension and the required symmetry element. Each crystal systems present different unit cell dimension and
different fold axes which are represent the different 3D Bravais Lattices in each of the crystal system. The
visualization of all point groups in each crystal systems shows that each point groups were extend under the
symmetry operations in each crystal systems. End of these operations, the visualization will shows the figure that
present the generator of each crystal systems (holohedry) and the representation of finite group for each of the
crystal systems.
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