UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF NICKEL OXIDE AS SINTERING AID ON THE DENSIFICATION OF BaCe0.54Zr0.36Y0.10O2.95 ELECTROLYTE

NURFAZLINI BINTI ZAINOL

Thesis submitted in partial fulfilment of the requirements for the degree of **Bachelor of Science (Hons.) Physics**

Faculty of Applied Science

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurfazlini Binti Zainol
Student ID No.	:	2017411566
Program	:	AS203-Bachelor in Science (Hons.) Physics
Faculty	:	Applied Science
Thesis Title	:	The Effect of Nickel Oxide as Sintering Aid on The
		Densification of $BaCe_{0.54} Zr _{0.36} Y_{0.10} O_{2.95}$ Electrolyte.

Signature of Student	ature of Student :	Frice

Date

: July 2020

ABSTRACT

This study was conducted to study the role of nickel oxide as sintering aid on the BaCe_{0.54}Zr_{0.36}Y_{0.10}O_{2.95} (BCZY) electrolyte. An electrolyte with highly dense proton conducting materials of BaCe_{0.54}Zr_{0.36}Y_{0.10}O_{2.95} (BCZY) electrolyte with 4 wt% nickel oxide as sintering additive used as at intermediate temperature solid oxide fuel cells (IT-SOFCs) and have been processed via a sol-gel method. The microstructure and electrical properties of the BCZY electrolyte have been investigated under scanning electron microscope SEM and its electrical characteristic by electrochemical impedance spectroscopy (EIS). The microstructural characterizations of the 4NiO-BCZY electrolyte show enhanced density of the BCZY electrolyte after nickel oxide was added. The density percentage obtained for the 4NiO-BCZY electrolyte is 93%, while the original BCZY only 90% although both of the sample sintered on same conditions which at temperature 1500 °C for 5 hours. The conductivity of 4NiO-BCZY electrolyte in this study show an increases of the conductivity values due to increasing of operational temperature. The conductivity that has been measured as 8.61 x 10^{-2} Scm⁻¹, 7.14 x 10^{-2} Scm⁻¹, 3.34 x 10^{-2} Scm⁻¹, 1.68 x 10⁻² Scm⁻¹, 9.51 x 10⁻³ Scm⁻¹ and 6.01 x 10⁻³ Scm⁻¹ at 800 °C, 750 °C, 700 °C, 650 °C, 600 °C, and 550 °C respectively.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	Page i
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF EQUATIONS	ix
LIST OF NOMENCLATURES	X
CHAPTER 1. INTRODUCTION	1
1 1 Background of Study	1
1.2 Problem Statement	2
1.3 Significance of Study	3
1.4 Objectives	3
1.5 Scope of Study	4
CHAPTER 2: LITERITURE REVIEW	5
2.1 Introduction	5
2.2 Solid Oxide Fuel Cell (SOFCs)	7
2.3 Approach to Obtain High Relative Density of BCZY Electro	olyte 11
2.4 Characterization of Sample	13

2.5 Electrical Studies of Electrolyte Pellets.	15
CHAPTER 3: RESEARCH METHODOLOGY	18
3.1 Introduction	18
3.2 Powder Preparation of BCZY Electrolyte	18
3.3 Fabrication of BCZY Pellet	23
3.4 Density of Pellet	24
CHAPTER 4: RESULT AND DISCUSSION	28
4.1 Densification of BCZY Electrolyte	28
4.2 Electrical Properties of BCZY Electrolyte	29
CHAPTER 5: CONCLUSION AND RECOMMENDATION	34
5.1 Conclusion	34
5.2 Recommendation	34
REFFERENCES	35
APPENDICES	39
AUTHOR'S PROFILE	640