A DESIGN OF A MICROSTRIP WIDEBAND ANTENNA

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

PREPARED BY:

AHMAD ASARI SULAIMAN FADZLIANA SAAD MUHAMMAD REDZUAN SAAD

MARCH 2008

ABSTRACT

This project presents an investigation in the design of a microstrip wideband antenna by arrangement few rectangular patch antennas at different frequencies. A microstrip patch antenna operates at the range of 5.4 -5.5 GHz has been designed. The antenna has been fabricated on the duroid substrates with $\varepsilon_r = 2.33$. Copper substrate thicknesses and height are 0.0356 mm and 0.5 mm respectively. A measurement has been carried out to find it return loss and VSWR.

Simulation packages *GENESYS* and calculation program linecalc were used to design the microstrip wideband antenna.

An analysis of microstrip wideband antenna was conducted and measurement characteristic was taken. These included voltage standing wave ratio (VSWR) and return loss. From this project, *GENESYS* simulation computed at 5.407 GHz VSWR value of 1.13 and 24.277 dB return loss.

The simulation results agree closely to measurement .The different critical resonant frequency for simulation and measurement is about 0.28GHz. Results from measurement yielded VSWR of 1.17 and return loss 22.888 dB at the frequency 5.7 GHz (critical resonant frequency for measurement).

ACKNOWLEDGEMENT

Praise is to Allah, the Almighty, for bestowing His grace and mercy on us and for granting us the ability to complete this research.

Our deepest appreciation to the Dean Faculty of Electrical Engineering, Prof. Madya Dr. Yusof Md Salleh, URDC Chair Faculty of Electrical Engineering, En. Mustafa Kamal Hamzah and the Head of Microwave Technology Centre, Prof. Dr. Zaiki Awang.

Our special grattiude also goes to our parents, family members, beloved wife/husband and children for their love, supports and encouragements.

Finally, our thanks to the colleagues and superiors in the Faculty of Electrical Engineering UiTM, who have assisted and encouraged us during the completion of this research.

TABLE OF CONTENTS

		CHAPTER	PAGE
	TITI	LE ,	i
	LET	TER OF APPLICATION FOR PROJECT REGISTRATIO	N ii
	TEA	M MEMBERS	in
	ABS	TRACT	iv
	ACK	KNOWLEDGEMENT	V
	LIST	r of figures	X :
	LIST	Γ OF TABLES	xi
	LIST	Γ OF ABBREVIATIONS	xii
1	INT	RODUCTION	1
	1.1	Microwaves Antenna Fundamentals	3
		1.1.1 Antenna Characterics	3
		1.1.2 Antenna Efficiency	4
	1.2	Microwaves Integrated Circuit (MIC) structure	5
	×	1.2.1 Stripline	5
		1.2.2 Coplanar waveguide	7
		1.2.3 Slotline	9
		1.2.4 Finline	10
		1.2.5 Microstrip line	11
	1.3	Substrate material	13

		CHAPTER	PAGE
	1.4	Scope of the project	14
	1.5	Objective	15
	1.6	Organization of project	15
2	MIC	CROSTRIP ANTENNA THEORY	16
	2.1	Introduction	16
		2.1.1 Microstrip patches and stubs	16
		2.1.2 Advantages and Disadvantages of microstrip antenna	18
	2.2	Foundations for microstrip design	20
		2.2.1 Transmission line	21
		2.2.2 Patch antennas	22
	2.3	Linear polarized microstrip antenna	23
	2.4	Bandwidth	24
	2.5	Return loss	26
	2.6	Input impedance	26
	2.7	Voltage standing wave ratio (VSWR)	27
	2.8	Feeding techniques	27
		2.8.1 Microstrip line feed	28
		2.8.2 Coaxial feed	29
		2.8.3 Aperture coupled feed	30
		2.8.4 Proximity coupled feed	31
3	CO	MPUTER AIDED SIMULATION (CAD)	33
	3 1	Introduction to CAD	33