THE USE OF OXYGEN UTILIZATION RATE (OUR) IN MUNICIPAL WASTEWATER CHARACTERIZATION

By

NORFAZILAH BT ABD MANAN

Report is submitted as the requirement for the Degree of Bachelor Engineering (Hons) Civil

UNIVERSITI TEKNOLOGI MARA OCTOBER 2004

DECLARATION BY THE CANDIDATE

I <u>Norfazilah bt Abd Manan (2002238757)</u> confirm that the work is my own and that appropriate credit has been given where reference has been made to the work of others.

fuif (25/10/04)

ACKNOWLEDGEMENT

In the Name of Allah, the Most Beneficent, the Most Merciful. All praise to Him that enable me to managed and complete this report.

I would like to express my very special appreciation to my parents for their support and understanding.

A very sincere gratitude to my Project Supervisor, Associate Professor Ir Dr. Hj. Suhaimi Abdul Talib for his advice and guidance through accomplishment of this project.

Special thanks also to Environmental Laboratory Assistant, Puan Nora Hj. Sofian and En. Hazri Othman for helping me in preparing laboratory apparatus and guidence through implementing the laboratory works. And also Master Students, Cik Siti Maizurah Misuan and Cik Noora Samsinar Johari for their help and sharing information in completing the project.

Lastly to my friends and lecturer that participate in contributing helps and ideas in completing this project.

ABSTRACT

Wastewater characterization constitutes the starting point before undertakings the designing process for wastewater treatment. Basically, wastewaters are contributed from various resources such as commercial, industrial and domestic. In this study, the municipal wastewater has been characterized in term of strength and treatability using 5-days Biochemical Oxygen Demand (BOD₅) and Chemical Oxygen Demand (COD). But, these two conventional methods are becoming to be questioned as their relevance in representing microbial processes in wastewater. Oxygen Utilization Rate (OUR) is now being promoted as an alternative tool to characterize the wastewater. This study apply the OUR method to characterized municipal wastewater into various COD fractions.

Seventeen (17) samples had been tested during laboratory work. Result from BOD₅ and COD measurement gives that the municipal wastewater at sampling area are considered weak in strength and highly treatable. While, the result on OUR measurement and COD fraction analysis on municipal wastewater at sampling location show that the range of COD fractions of municipal wastewater in Malaysia differs from values reported by IAWPRC Task Group (Henze *et al.*, 1987). The easily biodegradable COD, Ss, fraction in this study was found lower at manhole and (WWTP). The hydrolysable component was found higher for both locations compared to IAWPRC values. An equation has been established to find a relationship between BOD₅ and Modified COD fractions. From the equation established, only a proportion (in percentage) of slowly biodegradable COD, Xs₂ are used in BOD₅ process.

KEY WORDS

Wastewater characterization, Oxygen Utilization Rate, COD fractions, Biochemical Oxygen Demand

TABLE OF CONTENTS

СНА	HAPTER			PAGE
1	INTRODUCTION			
	1.1	Background of the Study		1
	1.2 Problem Statement		nt	3
	1.3	,4 Scope and Limitation .5 Assumption		3
	1.4			4
	1.5			4
	1.6			5
2	LITERATURE REVIEW			
	2.1	The Role of Sewerage System in Malaysia		6
	2.2	Importance of Wastewater Characterization		7
2.3		Conventional Analytical Parameters		8
		2.3.1 Biochemi	cal Oxygen Demand (BOD)	8
		2.3.2 Chemical	Oxygen Demand (COD)	9
		2.3.3 Relations	hip between BOD ₅ and COD	9
		2.3.4 Strength a	and Treatability of Wastewater	11
		2.3.5 Total Sus	pended Solids (TSS), Total Dissolve Solids	15
		(TDS) and	d Volatile Suspended Solids (VSS)	
	2.4	Wastewater Composition		17
	2.5	Wastewater Characterization Using Respirometry		19
	2.6	Oxygen Utilization Rate (OUR) and COD- Fractions		20
		2.6.1 The Conc	ept of Oxygen Utilization Rate (OUR) Method	-20