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ABSTRACT

Geometric function theory of a complex functions makes a study of analytic univalent
functions and various geometric properties of certain classes of analytic functions. In this
area of study, there are many classes of functions that have been introduced. Apart from
that, every class of functions have their own properties such as extremal properties, radius
properties, representation theorem and coefficient bound. Thus, the purpose of this study

are defining new subclasses of analytic functions, M(a,é,t) as well as determining the

second Hankel determinant for the class of functions.

In this research, we introduced new subclasses of analytic functions and focus on finding

upper bounds for the functional ‘aza4 —a,’|, that known as second Hankel determinant and

it is one of the coefficient inequalities in geometric function theory. For the new subclass

of analytic functions, we introduced class of close-to-convex functions, M(a,é,t)

defined in the unit disk, £ = {z : |z| < l}, which satisfies the condition Re{e"’ —ka)} >0

(@)

where |o] <7, cos(a)>d, g(z) S and —1<¢<1- In order to derive our

o (e ()

main result, we use the Lemma of Pommerenke (1975), Lemma of Toeplitz determinants

and Lemma of Libera (1983) and Zlotkiewicz (1982). By obtaining the upper bounds for

second Hankel determinant ‘aza4 —a;‘ for the class of functions M(e,d,t), we can

reduce to Kaharudin et al.(2011). The result of second Hankel determinant obtained is a

keen result and this property lead to development of second Hankel determinant.
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Figure 1: Step in finding second Hankel determinant



