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Abstract—In this study, simultaneous Demand Side 

Management (DSM) strategies are proposed for energy 

consumption cost reduction and peak load mitigation to 

industrial’s consumers. By which, a real test case study of a 

manufacturing electricity load profile had been used to prove the 

concept. A superior bio-inspired algorithm, Particle Swarm 

Optimization (PSO) and Ant Colony Optimization (ACO) had 

been implemented and compared in order to optimize the upright 

load profile of load management strategy. Subsequently, 

significant simulation results of operation profit gain through 24 

hours power consumption had been analyzed properly. The 

proposed method had shown reduction of electricity energy 

consumption cost at all pricing zones; and Maximum Demand 

(MD) cost mitigation when load management weightages were 

applied to the identified 10% controlled loads consequently. The 

investigation has found that, the loads are manageable through the 

improvement of Load Factor Index (LFI) while Buildings’ 

Electricity Economic Responsive Index (BEERI) has been the 

indicator to find the minimum requirement for the optimum load 

management weightages. Thus, it is hoped that the finding of this 

study can help to poise the industrial operation in terms of 

electricity cost effectiveness as well as support the national 

demand side management program. 

 

Index Terms—Electricity Tariff, Time of Use, Maximum 

Demand, Load Factor Index, Demand Side Management 

 

I. INTRODUCTION 

ontinuous energy generation from burning fossil fuel has 

led to the increasing of CO2 emission. In the context of 

industrial  building’s  electricity demand, it is reported that 50% 

of the global energy consumption is required by the buildings 

for operation, which also contributes to approximately 80% of 

global warming [1]. The electricity consumption by industrial 

consumers is indeed for a major concern in many countries 

including Malaysia. Since new electricity tariff structure was 

implemented in 2014, there has been a slight increase in 
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electricity price, up to 20% compared to the baseline price of 

2013. Currently in Regulatory Period Two (RP2), the base rate  

 

that has been announced by the government in December 2017 

has moved up to 39.45sen/kWh starting from January 2018; 

compared to previous Regulatory Period One (RP1) (2015-

2017) which was 38.53sen/kWh [2]. In reflecting to the price 

upsurge, there is demand pricing signal program through new 

tariff modality introduced in 2016, which is called Enhance 

Time of Use (ETOU) tariff. The ETOU tariff program consists 

of three time zones which are Peak, Mid Peak and Off Peak, 

with different rate for each zone. Instead of conventional flat 

tariff for C1-commercial & E1-industry, and time of use with 

two zones of peak & off peak for C2-commercial & E2-

industry; to promote demand side management through peak 

load reduction is the main objective of the ETOU tariff. In the 

meantime, the general benefit of the ETOU will go to 

consumers through billing reduction, and the providers’ 

generation critical peak demand will be able to mitigate 

respectively. Details of specific time zones of ETOU tariff in 

Peninsular Malaysia is presented in [3], [4]  while the examples 

of tariff time zones in other countries are presented by India in 

[5], China in [6], and Brazil in [7] respectively.  

In the other hand, during the introduction of new tariff 

structure, the tariff pricing has been increased concurrently. The 

increase of electricity price has a direct impact on the industries’ 

consumer especially production type of manufacturing, such as 

increasing the cost of operation and reducing the effectiveness 

of the budget operational account [8], [9]. With regards to this 

problem, ETOU tariff has indeed come at the right time, but 

until today there is no concrete formulation that proves the 

concept on how industrial  consumers are able to reduce the 

electricity cost smartly. Even though the ETOU has been in 

market for quite a while, it was reported that less than 1% of 

commercial and industrial consumers join the program [10]. It 
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is due to several factors has contribute to that, such as less 

communication between electricity provider and consumers for 

the load management awareness while consumers’ side do not 

have proper strategy in order to deal with ETOU as to as 

enhance their knowledge to manage electricity load profile. Due 

to that reason, in this study, we provide knowledge sharing in 

order to help demand side consumer in dealing to ETOU 

program such below:  

(a) Introduce a novel of simultaneous formulation for six-time 

segmentation of Peninsular Malaysia ETOU tariff by 

considering optimal electricity consumption cost 

reduction and peak demand charge mitigation as well as 

produce better reference load curve in regards to specific 

industrial consumer. 

(b) Provide a better technique of load management by 

combining several DSM’s strategies such as valley filling, 

load clipping and load shifting and engage them to bio-

inspired algorithms, which are Ant Colony Optimization 

(ACO) and Particle Swarm Optimization (PSO).  

(c) Introduce consideration of fundamental concept of 

effective load management indicator by measuring the 

performance of Load Factor Index (LFI) and Buildings’ 

Electricity Economic Responsive Index (BEERI). Both 

improvements are important in order to show that the 

Maximum Demand (MD) cost and electricity cost 

consumption (kWh) has been reduced while optimum 

weightage of controlled load would be defined accurately 

This study has investigated and compared the test results of 

industrial flat tariff E1, TOU tariff E2 and conventional ETOU 

tariff E1 respectively. The real test baseline load profile was 

taken from an electronic based production manufacturing in 

southern Peninsular Malaysia.  By this way, the modality 

ETOU tariff program can be promoted; as the same time 

reducing the manufacturer’s electricity cost burden 

simultaneously. The rest of this paper is structured as follows. 

Section II briefly reviews some of related work to the proposed 

studies. Section III presents the optimal ETOU formulation for 

consumers while Section IV explain the implemented 

optimization algorithm accordingly. Meanwhile Section V 

discusses the analyses on the data results, and Section VI 

presents the conclusion for the study.  

II. LITERATURE REVIEW 

A. Demand Side Management Strategies in regards to 

Industrial TOU Tariff  

The early stage of the literature review only discusses on the 

general commercial and industrial’s   consumers to reflect to the 

variety of electricity tariff, but the scope of works on specific 

related studies to Time of Use tariff (TOU) under simultaneous 

demand side management (DSM) strategies “optimization” has 

not yet been discussed. Thus, as best of our knowledge, the 

TOU study in regards to the implementation of optimization 

algorithm has been divided into three categories which are;  

TOU load management that apply DSM strategies, TOU tariff 

design, and TOU with load scheduling (machine or operation 

system scheduling).  

Since there are less studies for manufacturing’s consumer 

regarding the implementation of DSM strategies and 

application of bio-inspired algorithm under scope of TOU tariff, 

we decide to perform the critical investigation about it. The 

state of art of those related works found are on the context of 

load scheduling but little on load profile optimization strategy. 

As in previous section, optimization of load scheduling in 

industrial type TOU environment has been highlighted in few 

others references such as in [11]  and [12]. PSO based algorithm 

has been applied while the objective of the operation cost 

optimization in line with load scheduling as well as concern 

about the manufacturer revenue. In conjunction to swarm base 

algorithm performance and load scheduling technique, the 

Evolutionary Algorithm (EA) optimization technique was 

introduced to deal with load shifting, specifically for standard 

machineries in residential, commercial and industrial 

consumers in reflect to promote cost saving under new tariff 

initiative such as Time of Day (TOD) , as reported in [13] and 

[14]. Meanwhile, optimization on specific system such as water 

heater and heat pump relative to TOU pricing has been 

reviewed in [15] and [16], respectively. In the studies, GA and 

PSO was applied in a controller to shift the schedule of water 

heater in order to find the optimal cost for heat pump and 

thermal storage scheduling. 

In the other hand, DSM strategies that consist of Peak 

Clipping, Conservation, Load Building, Valley Filling, Flexible 

Load Shape and Load Shifting are the examples of possibility 

strategies to be used for load profile management. Most 

researchers who implement the strategies for load profile 

management such as Peak Clipping in [17], [18], Conservation 

in [17], Load Building, Valley Filling in [6], and Flexible Load 

Shape and Load Shifting in [19], [20], [21], [22], [23] have 

applied the strategies in single application for different load 

profile. Nevertheless, most of them had not been applied as 

concurrent strategies while the application limit commercial 

and residential load profile electricity consumers only.  

With regards to the Malaysia ETOU tariff, several studies 

have been given priority to date. Conventional load shifting to 

industrial and commercial type of consumers in order  to 

mitigate the electricity cost has been proposed in [24] and [25]. 

However, the studies did not propose any related solution 

toward implementation of others DSM strategies as well as 

apply the optimization algorithm. Meanwhile the formulation 

of the optimal ETOU cost is only based on three related zones 

not in related six time segmentation as proposed by us. 

Therefore, in this study, ACO and PSO algorithms has been 

applied in order to achieve optimal solution in the environment 

of simultaneous Peak Clipping (PC), Valley Filling (VF) and 

Load Shifting (LS) implementation strategy. The desired 

formulation reflects the Malaysia ETOU tariff structure, as to 

as optimize the cost of MD and electricity consumption 

accordingly. To understand the industrial tariff as well as 

industrial’s electricity pricing in Peninsular Malaysia, we 

present the overview of it in the next section. Meanwhile details 

explain of propose formulation of optimal industrial ETOU 

tariff to optimization algorithms with certain constraints will be 

explained in section III.  
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B. Industrial Consumer Electricity Tariff in Peninsular 

Malaysia 

The difference between ETOU and conventional tariff is that, 

ETOU has an additional zone of time which is mid-peak. The 

peak period has been reduced from 12 hours to 4 hours only and 

off-peak maintains the same period of time zone as 

conventional TOU tariff.  The consumers receiving the flat 

tariff in conventional industry medium voltage D & E1 will be 

able to enjoy time of use tariff program, as well as open 

opportunity to get cost reduction.  Table I and Table IIpresent 

the TOU and ETOU tariff rates for industrial tariffs by provider. 

 
TABLE I 

FLAT & TOU TARIFF RATE (2014-PRESENT) 

Tariff 

Category 

MD: 

RM/kW 

Peak: sen/kWh Off 

Peak: 

sen/kWh 

Industrial 

D (LV) 

NA 38.00<(200kWh)<44.10 NA 

Industrial 

E1 (MV) 

29.6 33.7 NA 

Industrial 

E2 (MV) 

37 35.5 21.9 

Industrial 

E3 (HV) 

35.5 33.7 20.2 

 
TABLE II 

ETOU TARIFF RATE (2016-PRESENT) 

Tariff 

Category 

Demand Charge 

(RM/kW/Month) 

Energy Charge (sen/kWh) 

Peak Mid-

Peak 

Peak Mid-

Peak 

Off 

Peak 

Industrial 

D  (LV) 

42.1 37.2 48.4 32.7 24.9 

Industrial 

E1 (MV) 

35.5 29.6 56.6 33.3 22.5 

Industrial 

E2 (MV) 

40 36 59.2 33.2 21.9 

Industrial 

E3 (HV) 

38.3 35 57.6 32.7 20.2 

 

III. ETOU FORMULATION FOR CONSUMERS 

 Since the ETOU formulation is expressed in pricing unit 

where the objective function of the simulation is to optimize 

manufacturing’s buildings that registered under ETOU program 

as well as ETOU load curve rearrangement should be 

done.Hence, the general of optimum ETOU electricity energy 

(RM/kWh) has been written in (1): 

 

∆ETOUeCost +MDOptimum
Cost                                                 (1) 

 

∆ETOUeCost, is the electricity cost of desired load curve 

after DSM strategies are applied, which reflects six-time 

segmentation price base, as presented in (2) accordingly. 

Meanwhile the optimum Maximum Demand MDMP
Cost  

allocation and mitigation will be discussed in the constraints 

part. 

∆ETOUeCost=( ∑ ∆Pop×TPop)+( ∑ ∆Pmp1×TPmp)

N=3

t

N=10

t

 

 

+( ∑ ∆Pp1×TPp)+

N=1

t

( ∑ ∆Pmp2×TPmp)

N=2

t

       

 

 

+( ∑ ∆Pp2×TPp)+

N=3

t

( ∑ ∆Pmp3×TPmp)

N=5

t

             (2) 

Where, 

ΔPop= changing of off peak desired load curve with changing of 

time, N=10; 

ΔPmp1, ΔPmp2, ΔPmp3= changing of mid peak desired load 

curve with different time change, N=3, N=2 and N=5, 

respectively; 

ΔPp1, ΔPp2 = changing of peak desired load curve at time 

changing N=1 and N=3 separately; 

TPop= utility ETOU tariff price for off peak time zone; 

TPmp= utility ETOU tariff price for mid peak time zone; 

TPp= utility ETOU tariff price for peak time zone; 

The general total solution of DSM strategies selection for six-

time segmentation profile can be written as in (3). Demand side 

strategies which had been proposed to be included were Valley 

Filling (VF), Peak Clipping (PC) and Load Shifting (LS).  

 

∆POP,MP1,P1,MP2,P2,MP3
General = ∑ (∆Pts,i

VF

ts, i

×WVF)                    

                                             +(∆Pts,i
PC×WPC)+(∆Pts,i

LS×WLS)   (3) 

 

where ∆𝑃𝑡𝑠,𝑖
𝑉𝐹 , is the changing amount of desired load based on 

VF strategy by DSM at random load (i) in time segmentation 

(ts). ∆𝑃𝑡𝑠,𝑖
𝑃𝐶  and ∆𝑃𝑡𝑠,𝑖

𝐿𝑆  are the changing amount of desired load 

based on PC and LS strategies by DSM at random load (i) in 

time segmentation (ts) respectively. Meanwhile, the lower 

bound and upper bound of random load setting selection (i) had 

been set as in (4) in order to reflect controlled apportionment 

accordingly.  

 

0.005≤i≤0.10                                                                  (4) 

 

Temporarily, WVF, WPC, and WLS are the weightage of DSM 

strategies to be implemented in every single load profile 

concurrently; which is set by consumers depending on the 

percentage of load management ability setting at particular time 

segmentation that commonly set 0% to 100%. This weightage 

will be classify to the several cases due to the changing of it will 

affect the aptitude of the DSM strategies and performance of 

optimization algorithm.  

Apart from that, the constraints of the demand side strategies to 

achieve satisfying performance had been decided as follows: 

a. Constraints for VF 
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∆𝑃𝑡𝑠,𝑖
𝑉𝐹 , will be selected during time segmentation with minimum 

value of base load price. The (ts) adjustment of VF selection 

must be as 

Average load price>∆P
ts,i

VF
≥ Min baseload  price   (5) 

 

b. Constraints for PC 

∆𝑃𝑡𝑠,𝑖
𝑃𝐶 , will be selected during two highest price of time 

segmentation loads as well as where the maximum demand is 

located, where (ts) adjustment of PC selection must be as 

Average load price <∆P
ts,i

PC
≤ Max base load price   (6) 

 

c. Constraints for LS 

LS in the ETOU program shall lead to perform at randomly 

selected three time segmentations, different from the previous 

formulation by [24] who proposed ETOU load shifting to be 

best from peak to mid-peak time zone. However, in this 

investigation, especially for the simultaneous DSM strategies 

application, the best way to put LS is after VF and PC selection, 

while the rest of time segmentations will be the location for LS 

to perform randomly. The process of the proposed LS 

procedure in ETOU load profile is written as in  (7), (8) and (9) 

accordingly. 

 

∆Pts,i
LS≅∆Zts,i

shift                                                                           (7) 

∆Zts,i
shift down= (∆Zup

shift- ((∆Zup
shift-∆Zdown

shift )×ω))                          (8) 

∆Zts,i

shift up
= (∆Zup

shift- ((∆Zup
shift+∆Zdown

shift )×ω))                               (9) 

Where,  

∆Zdown
shift = changing of load decrease at certain time segmentation 

(ts) for the load, i; 

∆Zup
shift= changing of load increase at certain time segmentation 

(ts) for the load, i; 

ω = the random weightage of load decrease and increase at 

lower bound and upper bound load setting as in (4).  

d. Constraints for optimal Maximum Demand (MD) selection 

An important element of the ETOU tariff cost reduction on the 

demand side is Maximum Demand. In Equation 

(1),𝑀𝐷𝑜𝑝𝑡𝑖𝑚𝑢𝑚
𝑐𝑜𝑠𝑡 , is the variable to 𝐸𝑇𝑂𝑈𝑚𝑖𝑛

𝑐𝑜𝑠𝑡 𝑠𝑎𝑣𝑖𝑛𝑔
. Due to that 

reason, optimal selection and arrangement of MD at particular 

time segmentation are crucially needed. First, the arrangement 

of the Maximum Load for each time segmentation must be 

identified, where the segregation of MD at mid-peak load and 

peak load are determined, respectively. The selection of MD at 

a daily power (kW) capture is by mapping to both MD costs, 

either mid-peak charge or peak charge but the optimum of the 

will be the lowest cost at all. Equation (10) and (11) summarize 

the selection of MD power load to respective MD charge 

congruently. Meanwhile (12) shows the optimum MD charge 

obtained through selection of the combination from both peak 

and mid-peak selection accordingly. 

MDMP
cost=Max[LT2; LT4; LT6]× MDMP

TP            (10) 

 

MDP
cost=Max[LT3;LT5]× MDP

TP                 (11) 

 

MDP
cost ≥ MDOptimum

Cost =MDMP
cost                                   (12) 

Where, 

MDMP
cost= Optimum power load selection at Mid-Peak area; 

𝑀𝐷𝑃
𝑐𝑜𝑠𝑡= Optimum power load selection at Peak area; 

𝐿𝑇𝑛 = Selected power load for n number at particular time 

segmentation (ts); 

𝑀𝐷𝑀𝑃
𝑇𝑃 , and 𝑀𝐷𝑃

𝑇𝑃= the MD charge for different mid-peak and 

peak 

e. Constraints for total energy  

Total energy before and after of the optimization throughout the 

process of demand side strategies should not be more than 

±5%[26]. Equation (13) describes the constraints of six 

segmentation for total energy consumption (kWh) before and 

after optimization consequently.  

 

∑ ET ≅ ∑ ET
'                                                                 (13) 

 

Based on all the optimum formulation and effectiveness of the 

constraints setup for two variables in load profile adjustment, 

which are energy and power demand, the verification of the 

load profile improvement would be referred to Load Factor 

Index (LFI) as shown in (14).  

 

LFI=
∑ ETSn

MDOptimum
kW  × day × t

                                                    (14) 

 

Where 𝑀𝐷𝑂𝑝𝑡𝑖𝑚𝑢𝑚
𝑘𝑊  is optimum selection of MD (kW) at peak 

or mid peak zones, ∑ 𝐸𝑇𝑆𝑛 is total electricity consumption for 

total n time segmentations, and t is time of electricity usage. 

According to the command procedure, lower MD arrangement 

in load profile leads to more improvement of LFI. In the other 

hand, LFI also refer to the load response indicator which is 

measured form 0 until 1 with can be converted to percentage of 

hundred as maximum value. The ability of demand response is 

depending on the initial index; while the mitigation peak 

demand program able to improvement LFI expressively. 

Equation (15) represents the most correlated measurement 

performance of load management indicator which is Buildings’ 

Electricity Economic Responsive Index (BEERI). Different to 

Energy Efficiency Index (EEI) [27], or most command also 

called  as Building Energy Index (BEI) has consisted of specific 

energy related consumption not limited to electricity only; 

where BEERI focus on electricity economic based on load 

management with “optimal percentage” response to the 

multiple zones of utility tariff only. In propose of BEERI, our 

priority concern is to overlook and standardize the correlation 

of MD cost optimization ( as in (12)) & Energy Cost 

optimization ( as in (2)) to the impact of total electricity cost (as 

in (1)) respectively. Without considering any uncertainty to the 

measurement such in [28], the range setting of BEERI is from 

0 to 1 while the improvement of it must be less than baseline 

value. Noted that, not all energy cost saving will produce good 

results of BEERI, because of this index consider both demand 

cost and total energy cost for the sustainable economic load 

management balancing as well as most optimal weightage of 

load management to be initially applied by consumers. 
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BEERI= 
MDOptimum

Cost

ETOUcost
optimal

                                                        (15) 

 

IV. OPTIMIZATION ALGORITHM 

To examine the effects of conventional tariff and ETOU 

tariffs on LFI and BEERI; as shown in Fig. 1, the optimization 

of MD and electricity consumption to the respective DSM 

strategies is accomplished based on ACO and PSO algorithms 

for the purpose of comparison and validation. 

 

A. Ant Colony Optimization (ACO) 

 

ACO Inspired by an ant colony foraging behavior, ACO 

uses the element of ant attribute to find the optimal path to 

the food source. In natural environment, pheromone is the 

communication channel for the ants to move around in 

finding possible food source through signal paths [29]. 

Depositing pheromone establishes the communication 

between ants, where the stronger the pheromone, the longer 

the path. By the process of mimicking, the ant in ACO 

represents possible solution that consists of  a set of nodes 

that have been visited by the ant in the line so far. Hence, 

when the next ants want to choose the nodes, these ants will 

possibly select the ones with highest level of pheromone. 

This situation contributes to the convergence of the optimal 

solution. Normally, ACO algorithm is developed in two 

importance parts, which are the processes of generating the 

ants, and updating pheromone [30]. In part 1, the ACO 

process consists of generating a new set of ants in each 

iteration according to the desired nodes. The probability of 

an ant to select a certain node can be expressed using (16) 

accordingly. 

𝑝(𝑎𝑖𝑗|𝑆𝑝) =
𝑟𝑖𝑗

𝛼 ∗ 𝜂𝑖𝑗
𝛽

∑ 𝑟𝑖𝑗
𝛼 ∗ 𝜂𝑖𝑗

𝛽
                                                     (16) 

 

where:  

p(aij|Sp)  = the probability of limit aij will be chosen in 

line to the partial solution Sp 

aij  = the limit from node i to node j 

rij  = the pheromone values at aij 

η
ij
  = an heuristic value, typically the inverse of the cost of 

going through aij 

α  = the pheromone importance factor 

β  = the heuristic importance factor 

Now, once the ant has evaluated its solution and calculating 

its fitness value, the value will be used in the following part 

2, which is updating the pheromone process. This is where 

the level of deposited pheromone is identified. The increase 

of the pheromone value in trail as the ant deposits will 

strongly limit the connecting nodes it has used. In 

conjunction to that, there is possibility of decreasing of the 

pheromone level as well; the process is called evaporation. 

Equation (17) and (18) illustrate the updating process of 

pheromone evaporation and reinforcement, respectively.  

rij=(1-ρ)*rij                                                           (17) 

where: 

rij = pheromone value at the limit from 𝑖 to 𝑗 

ρ  = pheromone evaporation factor 

         rij=rij+ ∑ Δrij                                                        (18) 

where: 

rij  = pheromone value at the limit from i to j 

∑ Δrij = pheromone to be added to the trail by an ant, which 

depends on the length/cost of the path taken by the ants. 

Various attempts have been made by researchers to find the 

best solution, especially in engineering work. The steps for 

the ACO algorithm that has been applied in this study are as 

follows: 

Step-1: Initialization of ants by setting α= 1, β=0 for (16) 

and ρ=0.3 for (17), as referred from [31]–[33]. The ants 

represent a set of possible initial load profile to determine 

single 24-hour of change in each electricity energy cost of 

electricity, called as nodes. The fitness values will be used 

for update of gathering more ants to proceed to the next step. 

Step-2: Formulating the constraints and determining the 

Cost. The updated pheromone values will be used to engage 

in the formulation of optimal ETOU electricity energy cost 

as to as MD cost and the DSM strategy as in (2) until (12) 

respectively. The update of total electricity energy cost in 

six-time segmentation will be used as the best Cost value in 

ACO process part 1, then to proceed to find the updated ants 

pheromone in part 2. 

Step-3: The best total energy cost for all segmentations is 

determined by best Cost value during pheromone update, 

while the best ants to symbolize optimal load profile is 

created concurrently. Again, (17) and (18) are applied in this 

step. 

Step-4: When the criterion for the best Cost has been 

fulfilled, the significant value of Cost is decided to be the 

convergence value to fulfill the set of constraints as well. If 

not, the list of new possible optimum setting of ants will take 

part, which means going through the process all over again. 

At this stage, the contribution of electricity energy cost and 

MD cost to the contribution of LFI and BEERI is generated. 

 

 

B. Particle Swarm Optimization (PSO) 

 

Authors in [34] has introduced PSO algorithm for the first 

stage and has been  updated by [35] to add the weightage factor 

in the equation to find the best solution. The concept of PSO 

was inspired by birds and fish schooling, while PSO has been 

basis of comprising between new algorithms to test their 
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superiors. The stage of implementation of PSO algorithm in 

determining optimal electricity energy cost as follows: 

 

Step 1: Initialization. The process starts with the initialization 

of population, which is determined by calling dailyload profile 

in 24-hours, as to as present consumers’ energy consumption 

pattern. Those variables are generated by the system via a 

random generator available in the program to compute the 

electricity cost for the profile in the next step. PSO parameters 

are then initialized, such as number of particles N, weighting 

factors, C1 and C2 and maximum number of iterations. In order 

to ensure the effectiveness of energy cost, optimization is 

maintained, and all the constraints as in (5) until (13) are applied 

strategically. 

 

Step 2: Fitness Calculation. An initial population of particles 

with random position, and velocities, in dimension in the 

solution space is randomly generated. For each particle that 

fulfills the constraints as in initialization stage, the load profile 

will be analyzed and the total ETOU electricity energy cost and 

MD cost is calculated by using (2), by adopting the correlation 

from (3), (4) and (12) simultaneously. Meanwhile, the input of 

the calculation and constraints is used to calculate LFI & 

BEERI as well (refer (15) and (16)).  

 

Step 3: Determine Pbest and Gbest. During the searching process, 

the two best values are updated and recorded. These values are 

related with the best solution that has been extended so far by 

each particle which retains path of its coordinate in the solution 

space. This value is noted as Pbest and another best value is Gbest, 

which is the whole best value so far by any particle. The Pbest 

and Gbest represent the generation of best ETOU energy 

consumption cost which also has contributed to generate 

optimum MD cost concurrently. 

 

Step 4: New Velocity and Position. In this process, the 

particles’ velocity and position is updated by applying (19) and 

(20), respectively. The particle’s velocity signifies a load 

profile curve changing. Meanwhile, the total load profile in all 

segments is evaluated by using the new position. The new 

position set will be tested for convergence. If convergence is 

not achieved, the process will be repeated. 

 

Vj
k+1=(ω×Vj

k)+ (C1r1(Pbestj
k -Xj

k)) +(C2r2(Gbestj
k -Xj

k))          (19) 

Xj
k+1=Xj

k+Vj
k+1                                                                 (20) 

Where, 

𝑉𝑗
𝑘 = velocity of particle 𝑗 in iteration 𝑘 

𝑋𝑗
𝑘= position of particle 𝑗 in iteration 𝑘 

𝜔 = inertia weightage 

𝑃𝑏𝑒𝑠𝑡𝑗
𝑘 = the best value of fitness function that has been achieved 

so far by particle 𝑗 in iteration 𝑘 

𝐺𝑏𝑒𝑠𝑡𝑗
𝑘 = the best value among the fitness values 

𝐶1& 𝐶2= constants that represent weightage factor of random 

acceleration terms 

𝑉𝑗
𝑘+1= new velocity 

𝑋𝑗
𝑘+1= new position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  1. Study flowchart and simulation. 

V. RESULTS & ANALYSIS 

In order to understand the output of this study, this section 

will details out the case study information. Meanwhile, 

investigation analysis are discussed in other next subsection 

with consist of total comparison of two different applied 

algorithms in validating the optimal formulation for the 

Malaysia E1 (MV) ETOU industrial tariff (as targeted tariff to 

be switched).  

A.  Case Study  

To prove the effectiveness of the formulation and efficiency of 

the proposed algorithm, tests had been conducted by using load 

profile of an electronic manufacturing. A one-year profile had 

been collected, which was then compressed into 2 weeks profile 

while was averaged into 1-day load profile which is within 24 

hours’ time. Fig. 2 shows a part of the weekly profile as the 

reference for the readers. Data of electricity energy profile had 

been measured through energy meter at 11kV substation’s 

busbar. For the analysis of the results in line to DSM strategies, 

the arrangement of the cases study by weithtage had been set as 

follows: 

Start 

Flat, TOU and ETOU 

(Electricity Prices; 

RM/kWh & RM/kW) 

Six-Time Segmentation Formulation of ETOU, DSM 

Strategies, Objective Functions & Constraints 

Optimization  

(ACO & PSO) 

Check convergence 

Results: Improvement Electricity Cost Reduction 

(Energy & MD), LFI and BEERI (Table 6) 

End 

No 

Yes 
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Case 1: baseline of the existing flat  and TOU tariff rate 

Case 2: E1 ETOU tariff rate without DSM strategies and 

optimization 

Case 3: E1 ETOU tariff rate by using 20% of the DSM 

strategies and ACO/PSO algorithms 

Case 4: E1 ETOU tariff rate by using 50% of the DSM 

strategies and ACO/PSO algorithms 

Case 5: E1 ETOU tariff rate by using 80% of the DSM 

strategies and ACO/PSO algorithms 

Case 6: E1 ETOU tariff rate by using 100% of the DSM 

strategies and ACO/PSO algorithms 

Note that the controlled load to be adjusted was only available 

at 10%, which had been identified during the detailed load 

apportioning assessment at site.  Hence, adjustment of the load 

management weightage had been set from 20% to 100% within 

the limitation of 10% controlled load only. In Fig. 3, the load 

apportioning for the most electricity consumption per system 

by end user is presented accordingly. The identified adjusted 

controlled load of 10% to be proposed was the 150HP 

compressor system. The rearrangement of the workers schedule 

was significant to the machine operational time that required 

compress air system to be ran was identified but will not 

considered in this study.  Analysis on the issue of the tariff 

transform into ETOU E1 type based on the 6 Cases will be 

explained in the next sub section accordingly. 

 
Fig.  2. Two-week electricity power consumption profile.  

 

 
Fig.  3. Load apportioning.  

B.  Analysis of Load Profile 

The obtained energy consumption profiles after simulation 

were divided in two parts which were ACO and PSO algorithms 

application as presented in Fig. 4 and Fig. 5 respectively. There 

was observed that, the implementation of optimal simultaneous 

DSM strategies had given significant impact to the movement 

of the load value during 24 hours operation of manufacturing. 

It was highest demand at off peak zone which was on 22:00pm 

to 4:00am while demand was started to drop during rest hour on 

17:00pm to 9:00pm. The energy profiles were produced by 

ACO’s cases had been remarked to be more stable and 

consistence compared to energy profiles that has been produced 

by PSO’s cases. However, both algorithms shape the same load 

curve when they were compared to baseline Case 1 and Case 

2on 9:00pm to 10:00pm where load was arranged to be 

increased. This situation of load increased in off peak zone was 

analyzed due to impact of valley filling and load shifting 

strategies congruently. Meanwhile the rest of load arrangement 

was noticed to slightly decrease during mid-peak and peak 

zones on 8:00am to 16:00pm due to peak clipping and load 

shifting strategies employment without changing the general 

load patent of initial baseline manufacturing operation. Instead 

of huge changing of the load curve when it was compared to the 

real operation, the significant DSM strategies come with proper 

determination of load management weightage has benefited 

building’s owner in order to manage appropriate loads in 

economic efficiency way.  

 

 

Fig.  4. Load profiles of ACO to baseline. 
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Fig.  5. Load profiles of PSO to baseline. 

C. Analysis of Cost Effectiveness 

As presented in formulation strategies that ETOU tariff has 

been segregated into six segmentations which were represent 

the adopted of time zones arrangement accordingly. 

Consequently, in this assessment of the cases were tested, we 

present the overall observation per segments optimization 

process by both algorithms. As determine in Table III, the 

energy consumption cost for the three baseline cases which 

were using flat  and TOU tariff  rate (Case 1 and conventional 

ETOU E1’s rate (Case 2) had shown the different prices where 

the minimum of it was recorded by Case 1 TOU. In regards to 

the adjustment of the simultaneous DSM strategies and 

algorithm implementation, there was obtained that the energy 

consumption cost for Cases 6 of both ACO and PSO were 

minimized accordingly. Since ETOU has offered different 

pricing for different time zones compered to TOU and flat tariff, 

the overall optimization results of the energy consumption cost 

were reduced started since Case 3 (ACO & PSO) when it was 

compared to Case 1 and Case 2. It was noticed that, without any 

strategy apply to the current load profile, the energy 

consumption cost was reduced approximately 2.48% compared 

to flat tariff as presented by Case 2 accordingly. Since the MD 

allocation of Case 2 was in peak zone, there was noted that the 

cost of MD was slightly higher compared to Case 1. 

Nonetheless, through the effectiveness of the proposed DSM 

strategies come with implementation of bio-inspired algorithm 

(ACO and PSO); the impact of load management for the overall 

ACO and PSO cases in using ETOU rate has proven to be able 

to reduce the cost for energy consumption and maximum 

demand simultaneously. As in Fig. 6, the tabulated data of 

energy consumption pricing in six segmentation derivation has 

been properly accessible while the supporting Fig. 7 and Fig. 8 

elucidates the performance of the algorithm iteration and 

optimum load profiles patents for the best obtained results so 

far. The energy cost for the Segment 1 (S1 off peak) had been 

increased dramatically in line to the increase of load 

management weightage as Case 6-ACO and Case 6-PSO 

contributed for about 12.80% and 16.78% one-to-one. 

Meanwhile, the energy cost for peak zones (Segments S3 & S5) 

and mid peak zones (Segments S2, S4 and S6) had been 

maximized reduced approximately 3.5% to 8.4% at peak zones; 

and 9.3% to 10.3% for both Case 6’s ACO and PSO 

respectively. The overall performance of the propose 

formulation of the ETOU optimization has contributed to save 

the energy cost up to 5.2% (Case 6-ACO) and 6.6% (Case 6-

PSO). Different to the method that was proposed by [24], the 

proposed formulation only help to find percentage of the load 

to be transferred but not cover holistic and balancing cost for all 

the segments (time zones) that should be focused on the realistic 

condition for instance mapping them to the appropriate 

controlled load at site assessment. Simultaneous optimum 

DSM’s strategies of load management formulation and 

constraints were able to maximize billing profit as the same 

time increase the economic efficiency through better tariff 

selection. The constraints proposed in [18] has been referred for 

this study where our proposed technique through combination 

of the concurrent peak clipping, valley filling and load shifting 

strategies in the single load profile has been better advantaged. 

This was proven by producing better results such to reduce the 

energy cost and optimum coordinate optimum MD cost for the 

multiple zones of electricity time base tariff. Hence in this 

study, better MD results was generated and observed in order 

to enhance the impact of total electricity cost reduction as to as 

improve the Loaf Factor Index (LFI) significantly. As 

illustrated in Table III, there were proportional reduction of the 

MD cost to the total electricity cost for both cases of ACO and 

PSO. It was leant that in order to sustain MD cost reduction, the 

location of the MD should be moved to mid peak areas while 

maintain the load curve in line to baseline of manufacturing 

operation needs. In this results performance, through multiple 

consideration to produce better results, it was declared that the 

contribution in this study was different to others such in [36] 

(had considered load shifting only limit to reduce energy cost 

but not considered maximum demand); [14] (had proposed 

consideration of peak demand mitigation and load shifting 

technique only but not deliberate the demand side strategies 

properly); [13] (had presented the load shifting method in real 

time pricing where the forecast and real simulation results were 

observed to much different compared to baseline 

consideration). In this study, the Case 6-ACO and Case 5-PSO 

had contributed to minimum the cost for the total electricity bill 

(energy (kWh) cost and MD cost) accordingly. It was noticed 

that the value of the MD and location in mid peak zone has 

brought those Cases to be better although not in maximum 

weightage of load management adjustment. The reduction of 

the MD cost for about 7.8% and 8% has contributed to the 

improvement of LFI. Better LFI value indicates the 

effectiveness of the demand response program as well as DSM 

strategies has been successful adopted congruently. Still, good 

value of LFI not presents the economic responsive towards 

minimum weightage of the controlled load to be applied. 

Meanwhile the actual condition of the decision making to be 

made in controlling the operation should be accurate and 

secured so that the efficiency of the tariff selection would be 

valuable in supporting cost saving program in industry. Due to 

that reasons, next section of the analysis and discussion will be 
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elaborated more on why simple ration of the MD and total cost 

as well as BEERI is proposed and how it works in order to help 

consumers to make decision in setting up the optimum 

percentage of load management to be implemented.  

 

 

Fig. 7. Optimum pricing convergence value for ACO and PSO. 

 

 

 

 

 

 

 

 

 

Fig.  8. Case 6 (ACO) and Case 6PSO load profiles again baseline load profile. 

D.  Analysis of Economic Efficiency Responsive 

As presented in Fig. 9 and Fig. 10, it was observed that the value 

of the LFI did not correlated to BEERI where several cases had 

revealed that; although LFI was improved but BEERI not. The 

regression analysis has been made to show the different of that. 

The value of R2 was 0.552 specifies that the correlation of them 

were under statistic standard. Due to that reason we could 

clarified that, LFI was the indicator to show the performance of 

the MD arrangement in demand response program while the 

improvement of that will improve efficiency of the DSM’s 

strategies that has been applied to the manufacturing operation 

system. Since BEERI as the ratio of the tariff modality which 

was MD cost to total electricity cost; the indicator performance 

of BEERI would be referenced for the truthful decision of the 

manufacturing operation to select the percentage of the 

controlled load to be involved. Meanwhile, in the phase of the 

load management strategy, BEERI will be one of the important 

information before the real execution demand response 

program would be entered. Such as in this case, the best 

performance of BEERI was recorded at Case 6 for ACO 

algorithm (improvise about 0.53%) and Case 4 for PSO 

algorithm (improvise about 0.60%) accordingly. It was 

analyzed that there were only 6% and 5% of load management 

in respect to Case of ACO and Case of PSO shall be involved 

in order to gain virtuous total of electricity cost saving.In the 

other hand, it was agreed that during the MD was located at 

Peak zone area, the performance of BEERI was not drop while 

the value of total electricity cost increase tremendously. 

Meanwhile, the overall performance of ACO algorithm in 

sustaining the improvement of BEERI was consistent but PSO 

algorithm consist Case 6 did not improve well. As mention 

early, it was proven that PSO algorithm was not consistent in 

determine the optimal results but able to find better result in 

enhancing the performance of BEERI.  
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Fig.  6.  Energy consumption cost of all segments. 
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TABLE III 

TOTAL OUTPUT OF THE SIMULATION RESULTS 

 

Cases 

Energy 

Consumption 

(kWh) 

Diff 

(%) 

MD 

(kW) 

MD 

Location 

Energy 

Consumption 

Cost (RM) 

MD Cost 

(RM) 

Total 

Electricity 

Cost/day (RM) LFI BEERI 

Case 1 Flat 20,540 NA 930 Peak 6,921.98 27,528.00 34,449.98 0.9203 0.7991 

Case 1TOU 20,540 NA 930 Peak 6,124.68 34,410.00 40,534.68 0.9203 0.8489 

Case 2 20,540 NA 930 Peak 6,750.47 33,015.00 39,765.47 0.9203 0.8302 

Case 3-ACO 20,543 0.01 901 Mid Peak 6,707.21 26,669.60 33,376.81 0.9500 0.7990 

Case 4-ACO 20,540 0.00 878 Mid Peak 6,654.28 25,988.80 32,643.08 0.9747 0.7962 

Case 5-ACO 20,540 0.00 889 Mid Peak 6,599.47 26,314.40 32,913.87 0.9627 0.7995 

Case 6-ACO 20,538 -0.01 860 Mid Peak 6,556.86 25,456.00 32,012.86 0.9951 0.7952 

Case 3-PSO 20,540 0.00 883 Mid Peak 6,697.93 26,136.80 32,834.73 0.9692 0.7960 

Case 4-PSO 20,540 0.00 863 Mid Peak 6,613.94 25,544.80 32,158.74 0.9917 0.7943 

Case 5-PSO 20,541 0.00 856 Mid Peak 6,541.45 25,337.60 31,879.05 0.9998 0.7948 

Case 6-PSO 20,544 0.02 874 Mid Peak 6,464.23 25,870.40 32,334.63 0.9794 0.8001 
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Fig.  9. LFI and BEERI improvement profiles. 

 
Fig.  10. LFI and BEERI correlation. 

VI. CONCLUSION 

Through the optimum formulation of the ETOU pricing for 

the industrial consumers, the effectiveness of it has been 

utilized well; wherever the simultaneous DSM’s strategies able 

to manage the loads; at the same time mapping them to the 

ETOU price signal consequently. Since the six segmentation 

ETOU tariff’s design in Peninsular Malaysia was different to 

others countries while the regulator has the authority to 

determine market conceptual; the proposed method to define 

the appropriate strategies for the electricity cost effectiveness 

from demand side consumers was presented well. By using the 

load apportioning technique in order to determine the controlled 

load to the implementation of the load management in adjusting 

weightage of 10% adjustable loads; the cost of the energy 

consumption (kWh) and maximum demand (kW) has been 

reduced properly. Most of the mid peak areas of MD location 

has contributed to the improvement of LFI while the relative 

component to determine the minimum percentage of load 

adjustment has been determined by using BEERI congruently. 

The performance of the both ACO and PSO algorithms has 

been analyzed while the ability of them to perform in the loads 

management environment has been considered succeed. Thus, 

the implementation of ACO algorithm has proven to be more 

sustained while produced better power consumption profile to 

be applied by consumer. After observation and analysis has 

been done, in order to enhance the topic of the study while open 

for  broad discussion in regards of the ETOU tariff pricing and 

cost optimization in consumer’s side; there are several 

recommendation should be given attention: 

a) The needs of procedure for the load apportioning 

technique and tariff selection guidelines. Currently, 

we are using only details energy audit procedure but 

for the purpose of the economic view in determine 

most economic operation to be involved in load 

managements, it should be holistic consideration of 

guideline including risk management in industrial 

tariff selection. 

b) Future study of the impact of single DSM strategy to 

the simultaneous DSM strategies. The analysis of 

those strategies should be considered where the 

limitation on consumers’ side to implement those 

strategies should be given attention. It also 

recommended to produce a proper technique for the 

optimum DSM strategies selection. 
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