THE BENDING STRENGTH OF REACTIVE POWDER CONCRETE (RPC) RECTANGULAR BEAM WITH OIL PALM TRUNK FIBRE REINFORCEMENT

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN PENGKOMERSILAN (IRDC) UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

DISEDIAKAN OLEH

DR HAMIDAH MOHD SAMAN ROZITA ARIS PROF. MADYA ZAKIAH AHMAD

FEBRUARI 2004

Tarikh:20 Februari 2004No. Fail Projek:

Penolong Naib Canselor (Penyelidikan) Institut Penyelidikan, Pembangunan dan Pengkomersilan (IRDC) Universiti Teknologi MARA 40450 Shah Alam SELANGOR D. EHSAN

Yang Berbahagia Prof.,

LAPORAN AKHIR PENYELIDIKAN "THE BENDING STRENGTH OF REACTIVE POWDER CONCRETE (RPC) RECTANGULAR BEAM WITH OIL PALM TRUNK FIBRE REINFORCEMENT"

Merujuk kepada perkara diatas, bersama-sama ini disertakan tiga (3) naskah Laporan Akhir Penyelidikan bertajuk "The Bending Strength of Reactive Powder Concrete (RPC) Rectangular Beam With Oil Palm Trunk Fibre Reinforcement" oleh kumpulan Penyelidik berkenaan dari Fakulti Kejuruteraan Awam (FKA), Universiti Teknologi MARA(UiTM), Shah Alam, untuk makluman pihak Y.Bhg. Prof.

Sekian terima kasih.

Yang benar,

Jui Jams

DR. HAMIDAH BT. MOHD. SAMAN Ketua Projek Penyelidikan

TABLEOFCONTENTS

			PAGE				
ACKNOWLEDGEMENT			ii				
TABLE OF CONTENTS LISTS OF TABLES LISTS OF FIGURES ABSTRACT			iii vi viii xi				
				CHAPTER 1	INTRODUCTION		
					1.1	General Introduction	2
					1.2	Objectives of Study	5
	1.3	Scope of study	6				
CHAPTER 2	LITERATURE REVIEW						
	2.1	General Introduction of RPC	7				
	2.2	Excellent properties of RPC compared to	9				
		Normal Concrete (NC)					
	2.3	Composition of RPC	12				
	2.4	The Benefits of Reactive Power Concrete	14				
		(RPC)					
	2.5	Limitation of RPC	16				
	2.6	Use of Waste Material/ by Product Material	16				
		in Concrete					
	2.7	Use of Non-Metallic Reinforcement in	17				
		Concrete					
CHAPTER 3	EXPERIMENTAL PROGRAMME						
	3.1	Introduction	21				
	3.2	Preparation of Material	21				

~

ABSTRACT

investigation, the possibility of using Oil Palm Trunk Fibre In the present Reinforced Plastic (OPTFRP) as a reinforcement to replace steel in concrete was studied. OPTFRP was produced by using PVC pipes of appropriate diameters filled with fibre bundles of oil palm trunks of arbitrary lengths, and then pressure-injected with polyester resin. The prepared FRP bars were then left to cure partially at room temperature prior to demoulding, after which further curing commenced indefinitely. Expecting that the OPTFRP is low in tensile strength compared to that of steel, the possibility of using Reactive Powder Concrete (RPC), a very high strength concrete, to compensate the lack of that tensile strength was explored. RPC is invented with its superior toughness where it is reported that the use of supplementary shear and other auxiliary reinforcing steels can be eliminated. Four (4) series of concrete beams consisted of two identical of RPC specimens and two identical specimens of Grade 30 concrete designated RPC(A)-Steel, RPC(B)-Steel, RPC(A)-OPTFRP, RPC(B)-OPTFRP, Grade 30(A)-Steel, Grade 30(A)-OPTFRP were prepared. The results showed that the capacity of moment resistance of RPC rectangular beam reinforced with steel is more than twice of those made of Grade 30 concrete. However, RPC reinforced with OPTFRP did not show any improvement in capacity to resist moment. The use of even RPC failed to enhance the capability of beam reinforced with OPTFRP to resist moment.

CHAPTER ONE INTRODUCTION

1.1 General Introduction

At present, concrete (or, strictly speaking, reinforced concrete) has been extensively used for structures and foundations in almost every branch of civil engineering and architecture. Its high compressive strength, its fire systems via continuous and/or distributed reinforcements have led to its emergence as the dominant construction material. However, conventional concrete or even conventional high performance or high strength concrete lacks both the direct and shear strengths resulting in stocky structural members and excessive shear reinforcement. The latter prevents the brittle nature of diagonal tension failures by compensating for the reduced shear strength of the concrete.

Moving towards becoming a highly industrialised country and knowledgebased nation, Malaysia has to embark on concerted efforts in the establishment of research and development agenda on advanced construction materials through the exploitation of local resources that are available in abundance. The output of this research will shed a light on the future of