UNIVERSITI TEKNOLOGI MARA

EFFECT OF SILVER (Ag) AND ANTIMONY (Sb) SUBSTITUTION ON Ba-SITE OF POROUS STRUCTURED YBa₂Cu₃O_δ SUPERCONDUCTOR

FARIESHA FARHA BINTI RAMLI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

April 2011

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The topic has not been submitted to any other academic institution or non-academic institution for any other degree of qualification.

In the event that my thesis be found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	Fariesha Farha Binti Ramli
Candidate's ID No	2008294652
Programme	Master of Science (AS 780)
Faculty	Applied Sciences
Thesis Title	Effect of silver (Ag) and antimony (Sb) substitution on Ba- site of porous structured YBa ₂ Cu ₃ O _{δ} superconductor

Signature of Candidate

APRIL 2011

Date

.

ABSTRACT

In this work, the effect of silver (Ag) and antimony (Sb) substitution on Ba-site of porous structure YBa₂Cu₃O₈ (YBCO) superconductor was investigated. Polycrystalline sucrose was used as a supplementary filler to create the open pores in the structure. Two series of sample with a nominal composition of YBa_{2-x}Ag_xCu₃O_{δ} and YBa_{2-x}Sb_xCu₃O_{δ} where x = 0.05, 0.10, 0.15, 0.20, 0.30, 0.40 and 0.50 were synthesized and characterized. Standard sample and porous YBa₂Cu₃O_{δ} were also prepared for comparison. All the samples were prepared via solid state technique and undergo characterization by using X-ray diffraction (XRD) method, resistivity measurement technique and Scanning Electron Microscopic (SEM) equipment. All porous Ag doped sample showed metallic behavior at the normal state and have T_{C onset} around 90 K. T_{C zero} was decreased as the Ag concentration increased. Optimum Ag concentration was achieved at x = 0.20 where T_{C zero} and J_C at 70 K has the highest value of 87 K and 16.50 A/cm² respectively. For porous Sb doped sample with $x \le 0.30$, the samples showed metallic behavior above T_{C onset} while semiconducting behavior was shown for $x \ge 0.40$. The optimum Sb concentration was achieved at x = 0.15 where T_{C zero} is 85 K and J_C value measured at 70 K is 2.75 A/cm². T_{C onset} and T_{C zero} of the sample were suppressed towards higher Sb concentration. High level of Sb concentration resulted in the non superconducting sample and was not incorporated properly into YBCO system. Generally, the crystallographic structure with 123 phase remains as orthorhombic for all samples with the presence of some impurities at the high level of doping. However, for Sb doping at x = 0.30, the sample exhibits tetragonal structure before the presence of 211 phase with the increase of Sb concentration. SEM micrograph for porous sample showed the less dense packing with irregular grain shape compared to the standard sample where the small rounded particles grains that can be clearly seen. From the overall result, it can be summarized that the superconducting properties were attributed mainly by the dopants compared to the porous characteristic and porous Ag doped sample showed better superconducting properties compared to the porous Sb doped sample.

TABLE OF CONTENT

Page

AUTHOR DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	xii
LIST OF ABBREVIATIONS AND GLOSSARY	xiii

CHAPTER 1: INTRODUCTION

.

1.1	What is Superconductor?	1
1.2	History of Superconductor	2
1.3	New Form of Superconductor	4
1.4	Porous Material	6
1.5	Application of Superconductor	7
1.6	Problem statement of the Study	11
1.7	Objective of the Study	11
1.8	Scope and Limitation of the Study	12
1.9	Significance of the Study	12
1.10	Thesis Layout	13

CHAPTER 2: LITERATURE REVIEW

Superconductivity		14
2.1.1	Zero Electrical Resistance	14
2.1.2	Perfect Diamagnetism	16
Ceramic Oxide Superconductor		16
YBCO	O Superconducting System	17
	Supero 2.1.1 2.1.2 Ceran YBCO	Superconductivity 2.1.1 Zero Electrical Resistance 2.1.2 Perfect Diamagnetism Ceramic Oxide Superconductor YBCO Superconducting System

2.4	YBa ₂ Cu ₃ O _y (Y-123) Superconductor	18
2.5	Foam and Porous Superconductor	19
2.6	Doping Phenomena in YBCO Superconductor	22
2.7	Role of Ba-Sites	23
2.8	Silver (Ag) Doping	25
2.9	Antimony (Sb) Doping	28
2.10	Summarized of Ag and Sb doping	30

CHAPTER 3: METHODOLOGY

.

3.1	Sample Preparation		
	3.1.1	Preparation of Standard Sample (YBa _{2-x} $R_xCu_3O_\delta$)	31
	3.1.2	Preparation of Porous Sample (YBa ₂ Cu ₃ O _{δ})	33
	3.1.3	Preparation of Porous Ag Doped Samples $(YBa_{2-x}Ag_xCu_3O_{\delta})$	35
	3.1.4	Preparation of Porous Sb Doped Samples ($YBa_{2-x}Sb_xCu_3O_{\delta}$)	37
3.2	Densit	y Calculation	39
3.3	3 Sample Characterization		
	3.3.1	X-Ray Powder Diffraction (XRD)	40
		3.3.1.1 XRD fundamental principles	40
	3.3.2	Scanning Electron Microscopy	42
		3.3.2.1 Standard Operation for SEM	42
	3.3.3	Temperature-dependent Resistance Measurement	
		3.3.3.1 Critical Temperature Measurement (T _c)	43
		3.3.3.2 Critical Current Density Measurement (J _C)	44

CHAPTER 4: RESULT

4.1	Standa	Standard and porous sample, YBa2Cu3O6		
	4.1.1	Density Analysis	46	
	4.1.2	XRD Analysis	47	
	4.1.3	Critical Temperature Measurement (T _C)	49	
	4.1.4	Critical Current Density Measurement (J _C)	51	