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ABSTRACT

The study was to investigate the impact of multicollinearity on linear regression estimates.
The study was guided by the following specific objectives, (i) to examine the asymptotic
properties of estimators and (ii) to compare lasso, ridge, elastic net with Ordinary Least
Squares (OLS). The study employed Monte-Carlo simulation to generate set of highly
collinear and induced multicollinearity variables with sample sizes of 25, 50, 100, 150, 200,
250, 1000 as a source of data in this research work and the data was analyzed with lasso,
ridge, elastic net and ordinary least squares using statistical package. The study findings
revealed that absolute bias of ordinary least squares was consistent at all sample sizes as
revealed by past researched on multicollinearity as well while lasso type estimators
fluctuated alternately. Also revealed that, mean square error of ridge regression
outperformed other estimators with minimum variance at small sample size and OLS was the
best at large sample size. The study recommended that OLS was asymptotically consistent at
a specified sample sizes on this research work and ridge regression was efficient at small and
moderate sample size.
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1. Introduction

Statistical analysis of econometric data (cross sectional) usually is based on the sets of
fundamental assumptions such as homoscedasticity, normality, non-serial correlation, non—
autocorrelation of error term. If any of these assumptions is violated, the effect of it on the
parameter estimates usually leads to poor judgment on decision making. Henceforth, t-test or
test of hypothesis, standard error and confidence interval that make use of parameter estimate
become invalid.

A basic assumption in multiple linear regression model is that the rank of the matrix
of observations on explanatory variables is the same as the number of explanatory variables.
In other words, such matrix is of full column rank. This in turn implies that all the explanatory
variables are independent, i.e., there is no linear relationship among the explanatory variables.
It is termed that the explanatory variables are orthogonal. In many situations in practice, the
explanatory variables may not remain independent due to various reasons. The situation
where the explanatory variables are highly intercorrelated is referred to as multicollinearity.

Zakari et al. (2018) compares the Partial Least Squares Regression (PLSR), Ridge
Regression (RR) and Principal Component Regression (PCR) as an alternative procedure for
handling multicollinearity problem. A Monte Carlo simulation study was used to evaluate the
effectiveness of these three procedures. Mean Squared Errors (MSE) was calculated for
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comparison purposes. From the results of their work, it shows that the RR is more efficient
when the number of regressors is small, while the PLSR is more efficient than the others
when the number of regressors is moderate or high. Esra & Suleyman (2015) compared
partial least squares regression, principal component regression, ridge regression and multiple
linear regression methods in modelling and predicting daily mean PM10 concentrations on
the base of various meteorological parameters obtained for the city of Ankara, in Turkey. The
analysed period is February 2007. Their results show that while multiple linear regression and
ridge regression yield somewhat have better results for fitting to this dataset, principal
component regression and partial least squares regression are better than both of them in
terms of prediction of PM10 values for future datasets. In addition, partial least squares
regression was the remarkable method in terms of predictive ability as it had a close
performance with principal component regression even with a smaller number of factors.

Esra & Semra (2016) compared the performance of robust biased Robust Ridge
Regression (RRR), Robust Principal Component Regression (RPCR) and RSIMPLS methods
with each other and their classical versions known as Ridge Regression (RR), Principal
Component Regression (PCR) and Partial Least Squares Regression (PLSR) in terms of
predictive ability by using trimmed Root Mean Squared Error (TRMSE) statistic in case of
both of multicollinearity and outlier’s existence. Hence, the aim of this study is to investigate
the impact of multicollinearity in linear regression estimates while the specific objectives are
to examine the asymptotic properties of multicollinearity on how it affects the stability of
parameter estimates and to compare lasso, ridge and elastic net estimators with ordinary least
squares.

2. Methodology

The term multicollinearity is being defined as multi-implies many and collinearity implies
linear dependence. In other words, it is the existence of near-linear relationships among the
set of independent variables. The presence of multicollinearity causes all kinds of problems
with regression analysis (Gujrati, 2004). Multicollinearity refers to a situation in which there
is an exact (or nearly exact) linear relation among two or more of the input variables Hawking
and Pendleton (1983). Exact relations usually arise by mistake or lack of understanding.

2.1 Types of Multicollinearity

2.1.1 Perfect Multicollinearity

In case of perfect multicollinearity (in which one independent variable is exact linear
combination of the others) the design matrix X has less than full rank, and therefore the
moment matrix XX cannot be inverted. Under these circumstances, for general linear model

Y,=Xg+¢&, the ordinary least-squares estimator S, =(XX)'XY does not exist.

Mathematically, a set of variables is perfectly multicollinear if there exist one or more exact
linear relationships among some of the variables. It is expressed as

ﬂo+ﬂ1)(1i+;iyxzi+L+;ikai:O (1)

Holding for all observations i, where /; are constants and X; is the i" observation on the j

explanatory variables.

Perfect multicollinearity is fairly common when working with raw datasets, which
frequently contain redundant information. Once redundancies are identified and removed,
however, nearly multicollinear variables often remain due to correlations inherent in the
system being studied. In such a case, instead of the above equation holding, we have that
equation in modified form with an error term.

Ao+ A% + A%y +L+ 4 X +V, =0 2
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2.1.2 Imperfect Multicollinearity

In this case, there is no exact linear relationship among the variables, but the X; variables are
nearly perfectly multicollinear if the variance of vi is small for some set of values for the A’s.
In this case, the matrix XX has an inverse but is ill-conditioned so that a given computer
algorithm may or may not be able to compute an approximate inverse, and if it does so the
resulting computed inverse may be highly sensitive to slight variations in the data (due to
magnified effects of either rounding error or slight variations in the sampled data points) and
S0 may be very inaccurate or very sample-dependent.

2.2 Ordinary Least Square (OLS) Method

Recall that regression equation is given as:
Yi:ﬂ0+ﬂlxli+L+ﬂpon+gi (3)

where Yi is the explained variable, XX, X,,L,X  are the explanatory variables,
B, B B, L, B, are the regression coefficients and ¢; is the error term.
In matrix notation, we write the above model as multiple regression:

Y=XfB+¢ (4)
where Y is nx1 vector of responses, X is an nxp matrix of the regressor variables, B is a px1
vector of unknown constants, and € is an nx1 vector of random errors, with & i~ | ID(O, 0'2) it

will be convenient to assume that the regressor variables are standardized. Consequently,
XX is a pxp matrix of correlations between the regressors and the response. Introducing
normal function of normal distribution

f (X)_ 1 e*%‘z(Y*Xﬂ)l(Y*Xﬂ)

\27o?
1 _ 1
e

f(ﬁ,oz/XY):W 2o

Using maximum likelihood function to obtain Least Squares Regression (OLS)

®)

(y=xzf(r-x5)

L(B.0%/ XY)=(2n02)*2e*§<ﬂxﬁ)‘<wﬁ) o

Taking logarithm of both sides
log L(,0%/XY )= —g log(277) —% Iog(az)—z—lz(Y ~xBJ(v - xp) )
(o}

Differentiate with respect to ﬁ

8IogL(ﬂ,52/XY)_—l{_ v }
Since
dLogL(B.a*/XY)

ap

0 (8)
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XY - X3)=0
B=(X' X)Xy ©)

The coefficients of OLS ,B is proved to be unbiased estimate.
When differentiate with respect to ¢

alogL(ﬁ,az/XY):_ n 1 [(Y—Xﬁ)l(Y—XB)]

oo? 20% 20*

(10)

dlog LB, &%/ xY)

Il
o

2.3 Ridge Regression Estimator

The Ridge Regression technique proposed by Hoerl & Kennard (1970) has become a common
tool for analysis of data characterized with high multicollinearity. Addition of small positive
quantities to the diagonal elements of the XX matrix prior to inverting it has also been
suggested. For ridge regression can be expressed as:

B = (XX +21) " XY (12)
Where ,BR are ridge estimates of parameter vector, though the estimators are biased, they
have more precision in terms of mean square error than the OLS estimators and ;_ is a positive

value.
To estimate the coefficient of ridge regression as:

B= (Y = xﬁ)‘(v - xﬁ) subject BB <M ie. BF-M<0 (13)
#(5,0%/xY )= : o 2ol lprw) (14)

2no

Using maximum likelihood function to obtain Ridge Regression
(G0t xY )= (or?) e P @)
_ (2a) (o ez
Taking logarithm of both sides

log L(@ o/ XY )==2 Iog(Zﬁ)—% Iog(az)—%‘z v~ %) - %)+ 455 - M)}j )
Differentiate with respect to

dlogL(s,s?/XxY) -1] 1[ B ) -
e _25{ 2X|Y =X g |+24p (17)
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Since 8log L(/?,az/xv)zo

op
2(172 [2x:(v - 5)+225]=0

—2XY = XB)+ 248 =0

213 =2X*Y - X5)

B = (XX +21)" XY (18)

Ridge regression estimator E(#) = K is biased
When differentiate with respect to o2

dlog L(,Bﬁ{/XYj i 1 o N - (19)
05” 257 254{(Y_Xﬂj (Y_Xﬂjwl[ﬁ ﬂ_Mﬂ

+

dLogL( B, 02/XY)
_—-sa s e = 0
do?

MSE(ﬁRidge)zv(ﬁRidge)+ l(bias(ﬁ))sz UzTr[(Xlx +ADXX (XX +AI)71]+

2R (XX +A1)° B
RMSE = /MSE(f,.) (20)

2.4 The Least Absolute Shrinkage and Selection Operator

Proposed by Chenlei et al. (2006) is a popular technique for model selection and estimation in
linear regression models. It employs an L1-type penalty on the regression coefficients which
tends to produce sparse models, and thus is often used as a variable selection tool. They
showed that under appropriate conditions, the Lasso estimators are consistent for estimating
the regression coefficients, and the limit distribution of the Lasso estimators can have positive
probability mass at 0 when the true value of the parameter is 0. It has been demonstrated in
that the Lasso is more stable and accurate than traditional variable selection methods such as
best subset selection.
The Lasso estimate is the solution to

Basso =mﬂin(y—x,8)’(y—x,3), s.t. Z|ﬂ|st. (21)

Here t= 0 is a turning parameter. Let B° be the ordinary least square (OLS) estimate
and to =Y. | Bj° I. Values of t < to will shrink the solutions toward 0. As shown in Chenlei et
al. (2006) the Lasso gives sparse interpretable models and has excellent prediction accuracy.
An alternative formulation of the Lasso is to solve the penalized likelihood problem

faso =iy =38 (y=x5)+ 22 A @2

The formulation (21) and (22) are equivalent in the sense that, for any given A € [0,
o), there exists a t > 0 such that the two problems have the same solution, and vice versa.
Introducing normal function for normal distribution

1 l-xpftxp)

207

f(ﬁ,az/XY)zﬁe (23)

To estimate coefficient of lasso regression are the solutions to the L1 optimization problem:

702



Bayo et. al., Malaysian Journal of Computing, 6 (1): 698 -714, 2021

minimize (Y — Xﬁ)L(Y - Xﬁ) subject to ﬁ <M i.e, ﬁ -M<0 (24)
~ 1 LB r-xhealin)|
fl3,0%/XY )= e 2 25

Using maximum likelihood function to obtain Lasso Regression
L(3, 0%/ XY )=(275%) 2¢ =l lpge (26)

= (27;)’2("2% e'le#{(Y‘Xﬁ F-x@)a(5-m)|

Taking logarithm of both sides
log L(b,ﬁ / xvj =_7nlog(27r)—%log( 2)_ 1 {(Y _X b) (Y _X /})Jr

265°
1(,3— Mj (27)
Differentiate penalized residual sum of squares with respect to
dlogL(B,o%/xY)_ 212 Loxfy - X7 )+ 4]
o

op
Since dlog L(g}l,;#/ xY)_, 28)
- 2(172 [ 2x(y - x3)+ 4]=0
B :(xlx)l(xlv —%zj (29)

When differentiate with respect to o2

olog L(,b’,a{/ XYJ

06" - ng * 2;4 KY -X ff)l(Y - X BJ - /I(b— M ﬂ (30)
dlog L(f, 0% /XY)_
oo’
Lt =X - x)e 205 -m) -0

MSE(5, ., )=V (5, )+ (bias() f
RMSE = /MSE(3_._ ) (31)

It performs automatic variable selection, but it produces biased estimates for the large
coefficients but ignore other group of variables.

2.5 Elastic Net
The elastic net proposed a compromise between the two that attempts to shrink and do a
sparse selection simultaneously. A new regularization of the lasso for the unknown group of

variables and for the multicollinear predictors. The elastic net method over comes the
limitations of the Lasso method which uses a penalty function based on
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181, =214 (32)

Use of this penalty function has several limitations. For instance, in the “large p,
small n” case the Lasso selects at most n variables before it saturates. Also, if there is a group
of highly correlated variables, then the Lasso tends to select one variable from a group and
ignore the others. To overcome these limitations, the elastic net adds a quadratic part to the
penalty (IB 1?), which when used alone is Ridge Regression (known also as Tikhonov
regularization). The elastic net estimator can be expressed as:

2

B =argmin(y —xp) (y=xB)+ 437 A+ 230 A (33)

where A1 and A, are turning parameters. As a result, the elastic net method includes the Lasso
and Ridge Regression: in other words, each of them is a special case where A=\, A>,=0 or vice
versa. Introducing normal function for normal distribution

t(3.02/%Y )= \/21? A 1t) o

To estimate coefficient of elastic net regression are the solutions to penalized L1 and L2
optimization problem:

minimize (y - xB) (y - Xf3) subject to %Z?:lwﬂ + %ZLIﬂJIZ

(7.0 o e I (3)

Using maximum likelihood function to obtain Lasso Regression 357965092202129

n 1

(7.0 XY )= (oo oo a7 (30

I I_ ~, 2 XY :_El 2 _ll 2) 1 (Y:Xﬁ)l(Y—Xﬁ)j_
090"/ )= outzm) - lolo)- {ﬂq(ﬂ—M)M«z(ﬂlﬁ—M)
Differentiate penalized residual sum of squares with respect to

dlog L(ggyz/XY):_Zi2 [_gxl(X/})W%*Z’lzg] (37)

Since

slogL(F,0%/xY) (38)
op

2i—2 [Faxt(y -xp)+ 2, +24,5]=0

By = (XX +/121)1(X1Y —%z]
When differentiate with respect to a2

olog L(E,O-Z/XY):_ n2 +2i4 [(Y—X/})L(Y—XE)+A(E—M)+12(51,E—M)] (39)

oo’ 20 -
ologL(3.0%/XY) _, (40)
ol
[ A O ) S
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MSE (5., )=V (B )+ (bias() f (41)
RMSE = /MSE(3,,, ) (42)

2.6 Measurement Criteria
2.6.1 Bias of an Estimator

Let £ be an estimator of a parameter 8 we say that £ is a bias estimator of # if it becomes
more likely to be close to the true value as the sample size increases. This intuition attribute is
formalized in the notion of consistency.

It is defined that an estimator £ of g is said to be consistent, if for any arbitrary &, & >
0 there exists a value N such that for n > N, the probability of the estimator £. That is

Pr{(‘ﬁ—ﬁ‘ )< g}>1—5 (43)
Since the condition implies that

lim Pr(‘,@ —ﬂ‘ < g)zl (44)

Consistency is alternatively referred to as convergences in probability. Accordingly, we say
that # has f8 as its probability limit which we write Prlim ,B =pf

Biased = ‘E(,B)— ﬂ‘ (45)
A biased is said to be consistent if absolute value of biased estimates increases or decreases as
the sample sizes increases.

2.6.2 Mean Square Error Estimator

If we have a scalar parameter 8 to be estimated and the statistic T is used as an estimator, then
the mean square error is given as:

MSE(T. 5)=E(T -5 .5) (46)
=var(T, 5)+(bpY
MSE = E(T - g)
=E( -E(T)+E()- )

MSE = var(T )+ [b(8)f (47)

Meaning that mean square error is the sum of variance estimator and squared of bias estimator
and is efficient if smaller value is obtained compare to other estimators. In the case of
unbiased estimators, it is just the ratio of their variance and the one with smaller variance will
be more efficient if among all the unbiased estimators of £ is the one with the smallest
variance then it been called the most efficient estimator of 8, that is for two unbiased
estimators £, and f3, for the parameter 8 with variance V(f, ) and V (3, ) respectively, the
efficiency of §, relative £, is defined by

A

NN
€ 1,ﬁ2)=Vﬁ2 (48)
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It is also explained about the fit of the model to data set used and defined as:

MSE — Zi (y' B y') — Zi ei (49)

n-p n-p

2.6.3 Root of Mean Square Error Estimator

The root mean square error of an estimator £ is said to be more efficient if compared with
root mean square error of another estimator and defined as:

RMSE = M (50)
n-p

2.6.4 Predictive Mean Square Error Estimator

The predictive mean square error is defined as the average error in prediction y given x for
future case not used in the construction of a prediction equation. There are two regression
situations, x-random and x-controlled. In the case that x is random, both y and x are randomly
selected. In the controlled situation, design matrices are selected by experimenters and only y
is random. For case of presentation, simply consider only the x-random case. In x-random
situations, the data (x;,y;) are assumed a random sample from its parent distribution (X, Y).
Then, if (i(X) is a prediction procedure constructed using the present data, the prediction error
can be decomposed as

PE(2)=E(Y - a(X)y (51)
where the expectation
PMSE =mean((Y — X)) (52)
2.7 Data Generation Processes
A simulation study is performed to examine the magnitude of bias, mean square error, root of

mean square error and predictive mean square error due to the presence of multicollinearity
amongst explanatory variables in multiple linear regression model given as

Y=Xf+¢ (53)

Let the sample size n equals to 25, 50, 100, 125, 150, 200, 250 and 1000 using
Monte-Carlo simulation to replicate each sample size n in 1000 times, then data sets were
generated for highly collinear variables Xi;, X; and Xs; over uniform distribution with
minimum 0 and maximum 1 and induce multicollinearity in the variable X4 and Xs with
assume error e; = 0.2 and e, = 0.1.

Case one: to consider the case where X1, X2 and Xz are correlated with one another
X, =runif(n,0,1), i=123 (54)

Case two: to consider the case where X, and xz are sum together with error e;=0.2 to generate
random values of Xa.

X4=X2+X3+e1 (55)

Case three: to consider the case where X, and error e,=0.1 are sum together to generate
random values of Xs.

xs = X4+62 (56)
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And the response variable Y is generated from covariate X with the true parameter and error
term given as

Y, =B+ X+ L, X, + B X, + B, X, + B, X, +rnorm(n) (57)
Where 8; are 1.2,2.3,1.7,25,3.2and 1.6,i = 1,2,3,....,n
3. Data Analysis, Results and Interpretation
This section depicted the analysis, results and interpretation of comparison of lasso type
estimators with ordinary least squares (OLS) estimator when the covariates were
multicollinear. The correlation between variables with multicollinearity X and Xs regressed
with variables X1, X, and Xa.

Table 1: Correlation matrix of multicollinear covariates

Rij X1 X2 X3 X4 X5

X1 1.0000 -0.0593 0.07106 -0.0106 -0.0158
X2 -0.0593 1.0000 0.0491 0.6463 0.6285
X3 0.07106 0.0491 1.0000 0.6668 0.6513
X4 -0.0106 0.6463 0.6668 1.0000 0.9778
X5 -0.0158 0.6285 0.6513 0.9778 1.0000

From Table 1, it can be seen that multicollinearity exist in a correlation matrix, where R, ; that
had value above 0.9 shows that multicollinearity is present in the variable X anXs.

Table 2: Variance Inflation Factor (VIF) for the detection of multicollinearity

Variables 25 50 100 125 150 200 250 1000
X1 1.1920 | 1.0322 | 1.0143 | 1.0072 | 1.0024 | 1.0024 | 1.0024 | 1.0119
X2 2.5147 | 1.0322 | 3.7077 | 2.6136 | 3.1517 | 3.1517 | 3.1517 | 3.1313

X3 3.4871 | 4.0314 | 3.7515 | 2.6493 | 3.3550 | 3.3550 | 3.3550 | 3.3019
X4 25.5446 | 21.0742 | 26.9947 | 27.8870 | 26.0804 | 26.0804 | 26.0804 | 28.0683
X5 21.3060 | 18.6614 | 21.5356 | 23.2851 | 21.5203 | 21.5203 | 21.5203 | 22.8219

Table 2 depicts the detection of multicollinearity in the covariates using VIF, this
implies that X, and Xs had severe multicollinearity due to the high VIF that exceeded 10
which was the standard threshold.

Objective 1: To examine the asymptotic properties of estimators

Table 3: Absolute Bias and Mean Square Error of OLS Regression Estimate

Absolute Bias of OLS Regression Mean Square Error of OLS Regression

Sample Estimate Coefficients Estimate Coefficients

sizes

Jél} Jél B2 léE Bs Jés Eo Jéi B- Jés Bs Jés

25 0.01 | 0.0 001 | 002 | 0.01 | 002 | 0.79 | 054 | 1.35 | 1.73 | 813 | 7.01
52 27 38 14 61 72 11 67 16 67 84 88

50 001 | 0.04 | 0.01 | 0.02 | 0.03 | 0.02 | 0.19 | 0.24 | 094 | 094 | 209 | 1.72
54 34 90 33 99 42 39 78 81 63 42 69

100 0.03 | 0.03 | 0.02 | 0.02 | 0.04 | 0.03 | 0.13 | 0.13 | 054 | 0.42 | 1.38 | 1.03
28 09 04 92 26 60 64 09 09 76 41 93

125 0.00 | 0.01 | 0.04 | 0.00 | 0.05 | 0.04 | 0.07 | 0.09 | 0.31 | 0.26 | 1.02 | 0.80
58 83 05 28 94 13 84 78 56 02 95 09

150 0.00 | 0.00 | 0.01 | 0.01 | 0.03 | 0.02 | 0.06 | 0.08 | 0.21 | 0.23 | 0.91 | 0.73
42 48 44 03 47 43 82 37 9 39 48 29

200 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.05 | 0.07 | 0.18 | 0.16 | 0.62 | 0.52
04 12 49 74 97 55 78 04 93 79 00 64
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Absolute Bias of OLS Regression Mean Square Error of OLS Regression

Sample Estimate Coefficients Estimate Coefficients

sizes

Jél} Jél B2 léE Bs Jés Eo Jéi B: Jés Bs Jés

250 0.00 | 0.0 0.01 | 0.00 | 0.00 | 0.01 | 0.04 | 0.0 0.13 | 0.13 | 042 | 0.35
09 08 28 86 49 31 38 82 66 68 53 51

1000 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.08 | 0.03 | 0.12 | 0.10
06 29 60 28 12 13 96 24 76 65 70 06

Minim | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.03 | 0.12 | 0.10
um 04 08 60 28 12 13 96 24 76 65 70 06

From Table 3, the study observed that there are increments in absolute bias from
sample size 25 to 100 when considering Bo and B3 coefficients, also as the sample sizes
increases the absolute bias for o and Bs coefficients began to decrease, that is consistency of
estimator at larger sample sizes, sample above 100 could be regarded as benchmark for user
of statistics when facing with the problem of multicollinearity. When considering P
coefficient there is increment in absolute bias from sample size 25 to 50 as the sample sizes
increases the absolute bias for 1 coefficient began to decrease, that is consistency of estimator
at larger sample sizes, sample above 50 could be regarded as benchmark for user of statistics
when facing with the problem of multicollinearity. When considering 2 and PB4 coefficients
there are increments in absolute bias from sample size 25 to 125 as the sample sizes increases
the absolute bias for B, and (4 coefficients began to decrease, that is consistency of estimator
at larger sample sizes, sample above 125 could be regarded as benchmark for user of statistics
when facing with the problem of multicollinearity. When considering Bs coefficient there is
decrement in absolute bias from sample size 25 to 50 as the sample sizes increases the
absolute bias for Bs coefficient began to increase and decreases, that is inconsistency of
estimator at larger sample sizes due to severe multicollinearity.

The study also observed from Table 3, the coefficients Bs and Bs that had severe
multicollinearity among the MSE of coefficients Bo, B1, B2, B3, B4 and Ps also decreases as
sample sizes increases, this attest to the fact that the study observed efficiency of the
estimator and conformity to the law of large number.

Table 4: Absolute Bias and Mean Square Error of Lasso Regression Estimate

sample Absolute Bias of Lasso Regression Mean Square Error of Lasso Regression

Estimate Coefficients Estimate Coefficients
i £y Jip Bz B4 B: | By By i A3 B4 Az

sizes

25 0.04 | 0.0 0.09 | 0.04 | 0.07 | 0.04 | 0.78 | 056 |1.28 |1.74 |7.43 |5091
31 19 39 89 59 49 |73 78 15 55 91 81

50 0.07 | 0.05 | 0.07 | 0.06 | 0.09 | 0.12 | 0.18 | 0.25 | 095 |0.92 |1.94 | 165
15 75 94 60 16 59 |52 25 94 85 4 54

100 0.05 | 0.02 | 0.08 | 0.07 | 0.09 | 0.04 | 0.13 |0.12 [ 056 | 045 138 |1.01
07 52 71 00 58 95 |28 84 89 32 66 00

125 0.06 | 0.05 | 0.07 | 0.03 | 0.04 | 0.03 | 0.08 |0.10 [ 031 [0.24 |1.05 |0.83
09 65 01 77 95 39 |58 87 10 59 34 38

150 0.06 | 0.04 | 0.07 | 0.09 | 0.09 | 0.05 | 0.07 | 0.08 [0.24 |0.26 |095 |0.71
55 25 54 37 83 70 |18 41 48 61 47 66

200 0.05 | 0.02 | 0.08 | 0.07 | 0.04 | 0.00 | 0.06 | 0.06 |0.19 |0.19 |0.62 | 0.52
27 73 33 40 87 98 |15 89 35 67 63 15

250 0.05 | 0.04 | 0.09 | 0.08 | 0.06 | 0.01 | 0.04 | 0.05 |0.14 |0.15 | 0.48 | 0.37
82 21 67 89 48 18 | 02 34 98 94 47 60

1000 0.04 | 0.03 | 0.07 | 0.06 | 0.06 | 0.03 | 0.01 | 0.01 |0.04 |0.04 |0.12 |0.09
94 26 34 35 90 54 |26 34 52 35 42 71

Minim | 0.04 | 0.00 | 0.07 | 0.03 | 0.04 | 0.00 | 0.01 | 0.01 |0.04 |0.04 |0.12 | 0.09
um 31 19 01 77 87 98 | 26 34 52 35 42 71

From Table 4, the study observed that there are increment and decrement in absolute
bias varying from sample size to sample size when considering Bo, B1, P2, B3, P2 and Ps
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coefficients as the sample sizes increases the absolute bias of coefficients began to decrease
and increases that is inconsistency of estimator at varying sample sizes.

The study also observed from coefficients B4 and Bs that had severe multicollinearity
among the MSE of coefficients Bo, B1, P2, B3, P4 and Ps also decreases as sample sizes
increases, this attest to the fact that the study observed efficiency of the estimator and
conformity to the law of large number.

Table 5: Absolute Bias and Mean Square Error of Ridge Regression Estimate

Absolute Bias of Ridge Regression Mean Square Error of Ridge Regression

Sample Estimate Coefficients Estimate Coefficients

sizes = = = - - -
B By B B3 B Bs Bo By i B3 Bs Bs

25 046 | 031 |0.16 | 006 |069 |051 |[085 |052 [076 [0.76 |0.90 |0.72
03 14 69 48 10 60 19 75 16 14 59 68

50 026 | 013 | 022 |0.09 |0.78 | 043 |022 |0.20 |042 |033 |0.77 |0.34
67 10 15 41 74 61 93 56 96 98 70 53

100 032 | 023 |013 | 006 |0.75 |044 | 020 |0.16 |0.21 |0.15 |0.64 |0.26
43 88 84 03 92 83 91 13 09 85 10 87

125 029 [ 019 | 021 |0.08 |0.79 045 |0.15 |0.12 |0.20 |0.12 | 0.68 | 0.25
37 67 24 55 83 20 52 05 12 77 42 00

150 032 | 020 | 016 |0.10 | 080 045 |0.16 |0.11 |0.14 |0.12 | 0.68 | 0.24
09 63 70 56 24 38 36 19 26 70 70 56

200 035 | 022 | 009 |003 |075 [045 |0.17 | 0.10 | 0.08 |0.08 | 0.60 | 0.24
21 44 55 00 47 83 52 76 95 53 16 06

250 029 [ 019 | 018 |0.12 | 080 |045 |0.11 |0.08 |0.09 |0.07 |0.67 |0.22
42 69 53 55 67 41 86 23 37 93 54 86

1000 |0.28 |0.19 |0.18 [ 0.13 | 080 | 045 |0.09 |0.04 |0.05 |0.03 |0.65 |0.21
71 75 37 84 63 55 04 90 06 73 64 36

Minim | 0.26 | 0.13 | 0.09 | 0.03 | 0.75 | 043 |0.09 | 0.04 |0.05 |0.03 |0.60 |0.21
um 67 10 55 00 47 61 04 90 06 73 16 36

From Table 5, the study observed that there are increment and decrement in absolute
bias varying from sample size to sample size when considering Bo, P1, B2, B3, Psa and Bs
coefficients as the sample sizes increases the absolute bias of coefficients began to decrease
and increases that is inconsistency of estimator at varying sample sizes.

The study observed from coefficients Po, B1, B2, B3, Ps and PBs that had severe
multicollinearity the mean square error of coefficients Po, B1, P2, B3, B4 and Bs also decreases
as sample sizes increases, these attest to the fact that the study observed efficiency of the
estimator and conformity to the law of large number.

Table 6: Absolute Bias and Mean Square Error of Enet Regression Estimate

Absolute Bias of Elastic Net Coefficients Mean Square Error of Elastic Net

Sample Coefficients

sizes = = = = = - - - -
Bo By Bs B3 Bs Bs Bo By i B3 Bs Bs

25 0.00 | 0.0 0.01 | 0.00 | 0.00 |0.00 |0.72 | 0.5 133 | 1.74 | 7.66 | 6.27
90 22 10 98 45 10 83 13 8 24 95 43

50 0.05 [ 0.02 | 004 |004 |011 (012 |016 |023 |092 |092 |1.76 |151
46 72 47 86 18 48 68 94 46 87 69 08

100 0.05 [ 0.04 | 001 |0.02 |004 003 [013 |012 |049 |041 |1.04 |081
62 05 78 61 83 41 43 96 77 87 95 13

125 0.05 | 0.04 |0.02 |0.04 |0.13 |0.13 |0.08 |0.10 |0.30 |0.24 |0.77 |0.59
70 59 28 32 82 39 02 09 98 25 51 27

150 0.06 | 0.03 |0.03 |0.05 |005 [0.05 |0.07 |0.08 |0.22 |0.24 |0.74 | 057
13 72 22 52 72 99 11 32 87 89 31 01

200 0.05 | 0.02 |0.05 |0.04 |007 |0.08 |0.06 |0.06 |0.18 |0.18 |0.50 | 0.43
18 58 02 39 15 00 14 84 22 64 25 01

250 0.05 | 0.03 | 0.04 | 004 |0.10 |0.11 | 0.04 | 005 |0.13 |0.14 |0.36 |0.30
75 68 83 56 69 29 22 57 45 43 01 08
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1000 | 0.05 | 0.03 | 0.04 |0.04 |0.08 |0.09 |001 |0.01 |0.03 |0.03 |0.10 |0.08
85 90 30 18 76 08 32 41 70 77 21 29

Minim | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |0.01 |0.01 |0.03 |0.03 |0.10 | 0.08
um 90 22 10 98 45 10 32 41 70 77 21 29

From Table 6, the study observed that there are increment and decrement in absolute
bias varying from sample size to sample size when considering Bo, B1, P2, B3, Ps and PBs
coefficients as the sample sizes increases the absolute bias of coefficients began to decrease
and increases that is inconsistency of estimator at varying sample sizes.

The study observed from coefficients Po, P1, Bs and Ps that had severe
multicollinearity, the mean square error of coefficients Po, P1, P2, B3, B4 and Bs also decreases
as sample sizes increases, these attest to the fact that the study observed efficiency of the

estimator and conformity to the law of large number.

Objective 2: Compare lasso, ridge and elastic net estimators with ordinary least squares
and interpretation.

Table 7: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n= 25

Sample size 25 Estimators Bo I B, B B, B
Ols 0.0152 0.0327 0.0138 0.0214 0.0161 0.0272
Absolute Bias L{_:ISSO 0.0431 0.0019 0.0939 0.0489 0.0759 0.0449
Ridge 0.4603 0.3114 0.1669 0.0648 0.6910 0.5160
Enet 0.0090 0.0022 0.0110 0.0098 0.0045 0.0010
Ols 0.7911 0.5467 1.3516 1.7367 8.1384 7.0188
MSE L{_:ISSO 0.7873 0.5678 1.2815 1.7455 7.4391 5.9181
Ridge 0.8519 0.5275 0.7616 0.7614 0.9059 0.7268
Enet 0.7283 0.5413 1.338 1.7424 7.6695 6.2743

From Table 7, considering the absolute bias of coefficients Bo, B1, B2, B3, P2 and Ps, the
study observed that Elastic net is consistent and outperformed other estimators with minimum
values and mean square error of Ridge is efficient. These served as benchmark regarded

sample size of 25 when facing with problem of multicollinearity.

Table 8: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=50

Sample size 50 Estimators Bo I B, B B, B
Ols 0.0154 0.0434 0.0190 0.0233 0.0399 0.0242
Absolute Bias Lgsso 0.0715 0.0575 0.0794 0.0660 0.0916 0.1259
Ridge 0.2667 0.1310 0.2215 0.0941 0.7874 0.4361
Enet 0.0546 0.0272 0.0447 0.0486 0.1118 0.1248
Ols 0.1939 0.2478 0.9481 0.9463 2.0942 1.7269
MSE Lasso 0.1852 0.2525 0.9594 0.9285 1.9440 1.6554
Ridge 0.2293 0.2056 0.4296 0.3398 0.7770 0.3453
Enet 0.1668 0.2394 0.9246 0.9287 1.7669 1.5108

From Table 8, considering the absolute bias of coefficients Po, B1, B2, B3, P4 and Ps, the
study observed that Ordinary least squares is consistent and outperformed other estimators
with minimum values and mean square error of Ridge is efficient. These served as benchmark

regarded sample size of 50 when facing with problem of multicollinearity.

Table 9: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=100

Sample size 100 Estimators Bao B, B, B B, B
Ols 0.0328 | 0.0309 | 0.0204 | 0.0292 | 0.0426 | 0.0360
Absolute Bias Lasso 0.0507 | 0.0252 | 0.0871 | 0.0700 | 0.0958 | 0.0495
Ridge 0.3243 | 0.2388 | 0.1384 | 0.0603 | 0.7592 | 0.4483
Enet 0.0562 | 0.0405 | 0.0178 | 0.0261 | 0.0483 | 0.0341
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Ols 0.1364 | 0.1309 | 0.5409 |[0.4276 |1.3841 | 1.0393

MSE Lasso 0.1328 | 0.1284 | 0.5689 | 0.4532 | 1.3866 | 1.0100

Ridge 0.2091 | 0.1613 | 0.2109 | 0.1585 | 0.6410 | 0.2687

Enet 0.1343 | 0.1296 | 0.4977 | 0.4187 | 1.0495 | 0.8113

From Table 9, considering the absolute bias of coefficients Bo, B1, B2, B3, P2 and Bs, the
study observed that Ordinary least squares is consistent and outperformed other estimators
with minimum values and mean square error of Ridge is efficient. These served as benchmark
regarded sample size of 100 when facing with problem of multicollinearity.

Table 10: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=125

Sample size 125 Estimators Lo B, B, g B, B

Ols 0.0058 | 0.0183 | 0.0405 | 0.0028 | 0.0594 | 0.0413

Lasso 0.0609 | 0.0565 | 0.0701 | 0.0377 | 0.0495 | 0.0339

Absolute Bias Ridge 0.2937 | 0.1967 | 0.2124 | 0.0855 | 0.7983 | 0.4520

Enet 0.0570 | 0.0459 | 0.0228 | 0.0432 | 0.1382 | 0.1339

Ols 0.0784 | 0.0978 | 0.3156 | 0.2602 | 1.0295 | 0.8009

Lasso 0.0858 | 0.1087 | 0.3110 | 0.2459 | 1.0534 | 0.8338

MSE Ridge | 01552 | 0.1205 | 0.2012 | 0.1277 | 0.6842 | 0.2500

Enet 0.0802 | 0.1009 | 0.3098 | 0.2425 | 0.7751 | 0.5927

From Table 10, considering the absolute bias of coefficients Bo, B1, B2, B3, P4 and Ps,
the study observed that Ordinary least squares is consistent and outperformed other estimators
with minimum values and mean square error of Ridge is efficient. These served as benchmark
regarded sample size of 125 when facing with problem of multicollinearity.

Table 11: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=150

Sample size 150 Estimators Bo B, B, - A Bs

Ols 0.0042 | 0.0048 | 0.0144 | 0.0103 | 0.0347 | 0.0243

Lasso 0.0655 | 0.0425 | 0.0754 | 0.0937 | 0.0983 | 0.0570

Absolute Bias Ridge | 0.3325 | 0.2239 | 0.1606 | 0.1408 | 0.8168 | 0.4477

Enet 0.0727 | 0.0429 | 0.0309 | 0.0148 | 0.1020 | 0.0754

Ols 0.0682 | 0.0837 | 0.2190 | 0.2339 | 0.9148 | 0.7329

Lasso 0.0718 | 0.0841 | 0.2448 | 0.2661 | 0.9547 | 0.7166

MSE Ridge 0.1743 | 0.1218 | 0.1361 | 0.1379 | 0.7072 | 0.2427

Enet 0.0750 | 0.0807 | 0.2110 | 0.2505 | 0.6986 | 0.5609

From Table 11, based on the absolute bias of coefficients Bo, B1, B2, Ps, P4 and Ps, the
study observed that Ordinary least squares is consistent and outperformed other estimators
with minimum values and mean square error of Ridge is efficient. These served as benchmark
regarded sample size of 150 when facing with problem of multicollinearity.

Table 12: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=200

Sample size 200 Estimators By B, B, B- A Bs

Ols 0.0004 | 0.0012 | 0.0049 | 0.0074 | 0.0197 | 0.0155

Lasso 0.0527 | 0.0273 | 0.0833 | 0.0740 | 0.0487 | 0.0098

Absolute Bias Ridge 0.3625 | 0.2422 | 0.1088 | 0.0291 | 0.7656 | 0.4615

Enet 0.0593 | 0.0382 | 0.0383 | 0.0484 | 0.1195 | 0.1207

Ols 0.0578 | 0.0704 |0.1893 | 0.1679 | 0.6200 | 0.5264

Lasso 0.0615 | 0.0689 | 0.1935 | 0.1967 | 0.6263 | 0.5215

MSE Ridge 0.1827 | 0.1135 | 0.0962 | 0.0778 | 0.6192 | 0.2451

Enet 0.0649 | 0.0769 | 0.1936 | 0.1858 | 0.5341 | 0.4461

From Table 12, considering the absolute bias of coefficients Bo, B1, B2, B3, Ba and Ps,
the study observed that Ordinary least squares is consistent and outperformed other estimators
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with minimum values and mean square error of Ridge is efficient. These served as benchmark
regarded sample size of 200 when facing with problem of multicollinearity.

Table 13: Comparison of the Three Methods with OLS for Absolute Bias and MSE at n=250

Sample size 250 Estimators Bq gl B, g 13"4 }595

Ols 0.0009 | 0.0008 | 0.0128 | 0.0086 | 0.0049 | 0.0131

Lasso 0.0582 | 0.0421 | 0.0967 | 0.0889 | 0.0648 | 0.0118

Absolute Bias Ridge 0.2942 | 0.1969 | 0.1853 | 0.1255 | 0.8067 | 0.4541

Enet 0.0575 | 0.0368 | 0.0483 | 0.0456 | 0.1069 | 0.1129

Ols 0.0438 | 0.0582 | 0.1366 | 0.1368 | 0.4253 | 0.3551

Lasso 0.0402 | 0.0534 | 0.1498 | 0.1594 | 0.4847 | 0.3760

MSE Ridge | 0.1186 | 0.0823 | 0.0937 | 0.0793 | 0.6754 | 0.2286

Enet 0.0422 | 0.0557 | 0.1345 | 0.1443 | 0.3601 | 0.3008

From Table 13, considering, the absolute bias of coefficients Bo, 1, P2, Pz, P2 and Ps,
the study observed that Ordinary least squares is consistent and outperformed other estimators
with minimum values and mean square error of Ridge is efficient. These served as benchmark
regarded sample size of 250 when facing with problem of multicollinearity.

Table 14: Comparison of the Three Methods with OLS for Absolute Bias and MSE at n=1000

~

Sample size 1000 Estimators By B, B, B B, B

Ols 0.0006 | 0.0029 | 0.006 0.0028 | 0.0012 | 0.0013

Lasso 0.0494 | 0.0326 | 0.0734 | 0.0635 | 0.0690 | 0.0354

Absolute Bias Ridge | 0.2871 | 0.1975 | 0.1837 | 0.1384 | 0.8063 | 0.4555

Enet 0.0585 | 0.0390 | 0.0430 | 0.0418 | 0.0876 | 0.0908

Ols 0.0096 | 0.0124 | 0.0376 | 0.0365 | 0.1270 | 0.1006

Lasso 0.0126 | 0.0134 | 0.0452 | 0.0435 | 0.1242 | 0.0971

MSE Ridge | 0.0904 | 0.0490 | 0.0506 | 0.0373 | 0.6564 | 0.2136

Enet 0.0132 | 0.0141 | 0.0370 | 0.0377 | 0.1021 | 0.0829

From Table 14, considering the absolute bias of coefficients Bo, B1, B2, B3, P4 and Ps,
the study observed that OLS is consistent and outperformed other estimators with minimum
values and mean square error of Ordinary least squares is efficient. These served as
benchmark regarded sample size of 1000 when facing with problem of multicollinearity.

Table 15: Comparison of the Three Methods with OLS for PMSE

Estimator 25 50 100 125 150 200 250 1000

Ols 1.3065 | 0.9387 1.2422 | 0.9978 | 0.9962 1.0642 | 0.9975 1.0005

Lasso 1.2955 | 0.9312 1.2465 | 0.7129 | 1.0293 1.0105 | 0.9550 1.0007

Ridge 1.3110 | 0.9584 1.2594 | 0.8919 1.0096 1.1552 1.0369 1.0278

Enet 1.3039 0.9276 1.2449 0.9149 0.9319 1.0294 | 0.9122 1.0021

Table 15 depicts the comparison of the predictive mean square error of three different
methods with OLS using different sample sizes. It shows that at n=25, Lasso is efficient for
precision, at n=50, Elastic net is efficient for precision and at n=100 and 1000, OLS is good
for precision.

4. Findings

This study investigated the impact of multicollinearity on linear regression estimates of lasso,
ridge and elastic net compared with ordinary least squares measure on criteria of absolute
bias, mean square error and predictive mean square error. From the analysis, it can be clearly
observed that the three methods applied can be used to solve the problem of multicollinearity.
Obijective one is to examine the asymptotic properties of estimators. From Table 3, the study
observed that, there are increment in absolute bias of OLS from one sample size to another

712




Bayo et. al., Malaysian Journal of Computing, 6 (1): 698 -714, 2021

when considering parameter estimates as the sample sizes is increasing the absolute bias
began to decrease showed that OLS is consistent. It can be observed that, there is decrement
in mean square error of OLS as sample sizes increases when considering parameter estimates
that is efficiency of an estimator. From Table 4, 5 and 6, there are increment and decrement in
absolute bias of lasso, ridge and elastic net as the sample sizes increases when considering
parameter estimates that are fluctuate alternately showed inconsistency of the estimators.
Table 4, 5 and 6 also observed that, there are decreases in mean square error of lasso, ridge
and elastic net as the sample sizes increases when considering parameter estimates, it implies
that estimators were efficient. As for the second objective of the study, a comparison on the
three lasso type estimators with OLS is presented in Table 7 that observed that, absolute bias
of elastic net is consistent and mean square error of ridge is efficient when considering
parameter estimates with minimum value at sample sizes of 25. Table 8, 9, 10, 11, 12 and 13,
depict that, absolute bias of OLSs is consistent and mean square error of ridge is efficient
when considering parameter estimates with minimum value at sample sizes of 50, 100, 125,
150, 200 and 250 respectively.

5. Conclusion

This study presents the impact of multicollinearity on the methods of estimating the
parameters of a regression model. From the analysis, it can be clearly observed that some
methods applied can be used to solve the problem of multicollinearity when the sample size is
small and moderate. Judging from the analysis, it can be observed that: In examining the
asymptotic properties of an estimator, absolute bias of OLS is consistent and mean square
error for lasso, ridge, elastic net and OLS asymptotically decrease as the sample size increases
thus, they are asymptotically efficient. To compare the three methods of lasso type estimators
with OLS in solving the problem of multicollinearity showed that ridge outperform other
estimators followed by elastic net. Focusing on multicollinearity, this study seeks to
contribute to recent efforts to improve researchers’ methodological approaches to the analysis
of linear regression model in some particular areas such as: a) When focusing on small and
moderate sample sizes in the presence of multicollinearity, ridge regression is recommended.
On the other hand, the OLS is recommended for large sample sizes i.e., assumption of
ordinary least square is valid and b) the major variables that influence multicollinearity.
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