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ABSTRACT 

 The study was to investigate the impact of multicollinearity on linear regression estimates. 

The study was guided by the following specific objectives, (i) to examine the asymptotic 

properties of estimators and (ii) to compare lasso, ridge, elastic net with Ordinary Least 

Squares (OLS). The study employed Monte-Carlo simulation to generate set of highly 

collinear and induced multicollinearity variables with sample sizes of 25, 50, 100, 150, 200, 

250, 1000 as a source of data in this research work and the data was analyzed with lasso, 

ridge, elastic net and ordinary least squares using statistical package. The study findings 

revealed that absolute bias of ordinary least squares was consistent at all sample sizes as 

revealed by past researched on multicollinearity as well while lasso type estimators 

fluctuated alternately. Also revealed that, mean square error of ridge regression 

outperformed other estimators with minimum variance at small sample size and OLS was the 

best at large sample size. The study recommended that OLS was asymptotically consistent at 

a specified sample sizes on this research work and ridge regression was efficient at small and 

moderate sample size. 
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1. Introduction 

 

Statistical analysis of econometric data (cross sectional) usually is based on the sets of 

fundamental assumptions such as homoscedasticity, normality, non-serial correlation, non–

autocorrelation of error term. If any of these assumptions is violated, the effect of it on the 

parameter estimates usually leads to poor judgment on decision making. Henceforth, t-test or 

test of hypothesis, standard error and confidence interval that make use of parameter estimate 

become invalid. 

A basic assumption in multiple linear regression model is that the rank of the matrix 

of observations on explanatory variables is the same as the number of explanatory variables. 

In other words, such matrix is of full column rank. This in turn implies that all the explanatory 

variables are independent, i.e., there is no linear relationship among the explanatory variables. 

It is termed that the explanatory variables are orthogonal. In many situations in practice, the 

explanatory variables may not remain independent due to various reasons. The situation 

where the explanatory variables are highly intercorrelated is referred to as multicollinearity. 

Zakari et al. (2018) compares the Partial Least Squares Regression (PLSR), Ridge 

Regression (RR) and Principal Component Regression (PCR) as an alternative procedure for 

handling multicollinearity problem. A Monte Carlo simulation study was used to evaluate the 

effectiveness of these three procedures. Mean Squared Errors (MSE) was calculated for 
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comparison purposes. From the results of their work, it shows that the RR is more efficient 

when the number of regressors is small, while the PLSR is more efficient than the others 

when the number of regressors is moderate or high. Esra & Suleyman (2015) compared 

partial least squares regression, principal component regression, ridge regression and multiple 

linear regression methods in modelling and predicting daily mean PM10 concentrations on 

the base of various meteorological parameters obtained for the city of Ankara, in Turkey. The 

analysed period is February 2007. Their results show that while multiple linear regression and 

ridge regression yield somewhat have better results for fitting to this dataset, principal 

component regression and partial least squares regression are better than both of them in 

terms of prediction of PM10 values for future datasets. In addition, partial least squares 

regression was the remarkable method in terms of predictive ability as it had a close 

performance with principal component regression even with a smaller number of factors.  

Esra & Semra (2016) compared the performance of robust biased Robust Ridge 

Regression (RRR), Robust Principal Component Regression (RPCR) and RSIMPLS methods 

with each other and their classical versions known as Ridge Regression (RR), Principal 

Component Regression (PCR) and Partial Least Squares Regression (PLSR) in terms of 

predictive ability by using trimmed Root Mean Squared Error (TRMSE) statistic in case of 

both of multicollinearity and outlier’s existence. Hence, the aim of this study is to investigate 

the impact of multicollinearity in linear regression estimates while the specific objectives are 

to examine the asymptotic properties of multicollinearity on how it affects the stability of 

parameter estimates and to compare lasso, ridge and elastic net estimators with ordinary least 

squares. 

 

2. Methodology 

 

The term multicollinearity is being defined as multi-implies many and collinearity implies 

linear dependence. In other words, it is the existence of near-linear relationships among the 

set of independent variables. The presence of multicollinearity causes all kinds of problems 

with regression analysis (Gujrati, 2004). Multicollinearity refers to a situation in which there 

is an exact (or nearly exact) linear relation among two or more of the input variables Hawking 

and Pendleton (1983). Exact relations usually arise by mistake or lack of understanding. 

 

2.1  Types of Multicollinearity 

 

2.1.1  Perfect Multicollinearity 

In case of perfect multicollinearity (in which one independent variable is exact linear 

combination of the others) the design matrix X has less than full rank, and therefore the 

moment matrix XX  cannot be inverted. Under these circumstances, for general linear model 

 += XY
i

, the ordinary least-squares estimator ( ) YXXX =
−1

ols
̂ does not exist. 

Mathematically, a set of variables is perfectly multicollinear if there exist one or more exact 

linear relationships among some of the variables. It is expressed as 

 

0
22110

=++++
kikii

xxx  L  (1) 

 

Holding for all observations i, where λj are constants and ijX is the ith observation on the jth 

explanatory variables. 

 Perfect multicollinearity is fairly common when working with raw datasets, which 

frequently contain redundant information. Once redundancies are identified and removed, 

however, nearly multicollinear variables often remain due to correlations inherent in the 

system being studied. In such a case, instead of the above equation holding, we have that 

equation in modified form with an error term.  

 

0
22110

=+++++
ikikii

vxxx  L  (2) 
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2.1.2 Imperfect Multicollinearity 

 

In this case, there is no exact linear relationship among the variables, but the Xj variables are 

nearly perfectly multicollinear if the variance of vi is small for some set of values for the λ’s. 

In this case, the matrix XX   has an inverse but is ill-conditioned so that a given computer 

algorithm may or may not be able to compute an approximate inverse, and if it does so the 

resulting computed inverse may be highly sensitive to slight variations in the data (due to 

magnified effects of either rounding error or slight variations in the sampled data points) and 

so may be very inaccurate or very sample-dependent. 

 

2.2 Ordinary Least Square (OLS) Method 

 

Recall that regression equation is given as: 

 

ipnpii XXY  ++++= L
110

                                                             (3) 

 

where Yi is the explained variable, 
pXXXX ,,,,

321
L  are the explanatory variables, 

p ,,,,
321

L are the regression coefficients and 
i
  is the error term. 

In matrix notation, we write the above model as multiple regression: 

 += XY   (4) 

where Y is nx1 vector of responses, X is an  matrix of the regressor variables, β is a px1 

vector of unknown constants, and ε is an nx1 vector of random errors, with ( )2,0~  IID
j

 it 

will be convenient to assume that the regressor variables are standardized. Consequently, 

XX  is a  matrix of correlations between the regressors and the response. Introducing 

normal function of normal distribution 

( )
( ) ( )





XYXY

exf
−−−

=
1

22

1

22

1
 

( ) ( ) ( )





~~

2

1

2

2

1

2

2

1
,

~ XYXY

eXYf
−−−

−

=  

(5) 

 
Using maximum likelihood function to obtain Least Squares Regression (OLS) 

 

( ) ( )
( ) ( )


~~

2

1

2
22

1

2

2,
~ XYXYn

eXYL
−−−−

=  (6) 

 

Taking logarithm of both sides 

( ) ( ) ( ) ( )



~~

2

1
log

2

1
)2log(

2
,

~
log

1

2

22 XYXY
n

XYL −−−−−=  (7) 

 

Differentiate with respect to 
~
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XYX

XYL   

Since    

 
(8) 
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( ) 0
~1 =− XYX   

( ) YXXX 111~ −

=  (9) 

 

The coefficients of OLS ̂  is proved to be unbiased estimate. 

When differentiate with respect to 2  
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( ) ( ) 112

OLS
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2.3 Ridge Regression Estimator 

 

The Ridge Regression technique proposed by Hoerl & Kennard (1970) has become a common 

tool for analysis of data characterized with high multicollinearity. Addition of small positive 

quantities to the diagonal elements of the  matrix prior to inverting it has also been 

suggested. For ridge regression can be expressed as: 

( ) YXXXR

111ˆ −

+=   (12) 

Where 
R̂  are ridge estimates of parameter vector, though the estimators are biased, they 

have more precision in terms of mean square error than the OLS estimators and λ is a positive 

value.   

To estimate the coefficient of ridge regression as: 

( ) ( ) 0M
~~

i.e.M
~~

subject
~~ˆ 11

1

−−−=  XYXY  (13) 

( ) ( ) ( ) ( ) M
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2

1
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eXYf                               (14) 

 

Using maximum likelihood function to obtain Ridge Regression 
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Taking logarithm of both sides  

( ) ( ) ( ) ( ) ( ) ( ) 
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Differentiate with respect to  
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Since                                              
( )
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,
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log 2
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Ridge regression estimator  is biased 

When differentiate with respect to  
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𝜕𝐿𝑜𝑔𝐿( 𝛽, 𝜎2 𝑋𝑌)  

𝜕𝜎2
= 0  
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2.4 The Least Absolute Shrinkage and Selection Operator 

 

Proposed by Chenlei et al. (2006) is a popular technique for model selection and estimation in 

linear regression models. It employs an L1-type penalty on the regression coefficients which 

tends to produce sparse models, and thus is often used as a variable selection tool. They 

showed that under appropriate conditions, the Lasso estimators are consistent for estimating 

the regression coefficients, and the limit distribution of the Lasso estimators can have positive 

probability mass at 0 when the true value of the parameter is 0. It has been demonstrated in 

that the Lasso is more stable and accurate than traditional variable selection methods such as 

best subset selection. 

The Lasso estimate is the solution to 

( ) ( ) ( )


xyxy −


−= minˆ
Lasso , s.t. tj

d

j


=1

 . (21) 

 

Here t  is a turning parameter. Let  be the ordinary least square (OLS) estimate 

and t0 = . Values of t < t0 will shrink the solutions toward 0. As shown in Chenlei et 

al. (2006) the Lasso gives sparse interpretable models and has excellent prediction accuracy. 

An alternative formulation of the Lasso is to solve the penalized likelihood problem 

( ) ( ) ( )  =
+−


−=

d

j
jxyxy

n 1Lasso

1
minˆ 


                   (22) 

The formulation (21) and (22) are equivalent in the sense that, for any given λ Є [0, 

α), there exists a t ≥ 0 such that the two problems have the same solution, and vice versa. 

Introducing normal function for normal distribution 

( ) ( ) ( )
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To estimate coefficient of lasso regression are the solutions to the L1 optimization problem: 



Bayo et. al., Malaysian Journal of Computing, 6 (1): 698 -714, 2021  

 703 

minimize ( ) ( )
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Using maximum likelihood function to obtain Lasso Regression 
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Taking logarithm of both sides  
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Differentiate penalized residual sum of squares with respect to  
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When differentiate with respect to  
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It performs automatic variable selection, but it produces biased estimates for the large 

coefficients but ignore other group of variables. 

 

2.5 Elastic Net 

 

The elastic net proposed a compromise between the two that attempts to shrink and do a 

sparse selection simultaneously. A new regularization of the lasso for the unknown group of 

variables and for the multicollinear predictors. The elastic net method over comes the 

limitations of the Lasso method which uses a penalty function based on 
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 =
=

p

j
j

11
                                                          (32) 

Use of this penalty function has several limitations. For instance, in the “large p, 

small n” case the Lasso selects at most n variables before it saturates. Also, if there is a group 

of highly correlated variables, then the Lasso tends to select one variable from a group and 

ignore the others. To overcome these limitations, the elastic net adds a quadratic part to the 

penalty (‖  ‖2), which when used alone is Ridge Regression (known also as Tikhonov 

regularization). The elastic net estimator can be expressed as: 
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++−
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where λ1 and λ2 are turning parameters. As a result, the elastic net method includes the Lasso 

and Ridge Regression: in other words, each of them is a special case where λ1=λ, λ2=0 or vice 

versa. Introducing normal function for normal distribution 
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To estimate coefficient of elastic net regression are the solutions to penalized L1 and L2 

optimization problem: 
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Using maximum likelihood function to obtain Lasso Regression 357965092202129 
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Differentiate penalized residual sum of squares with respect to  
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             ( ) ( ) ( )( )2~~~
 biasVMSE ENEN +=   (41) 

( )
EN

MSERMSE 
~
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2.6 Measurement Criteria 

 

2.6.1  Bias of an Estimator 

 

Let  be an estimator of a parameter  we say that  is a bias estimator of  if it becomes 

more likely to be close to the true value as the sample size increases. This intuition attribute is 

formalized in the notion of consistency. 

 It is defined that an estimator  of  is said to be consistent, if for any arbitrary ε, δ > 

0 there exists a value N such that for n > N, the probability of the estimator . That is  

( )   −− 1ˆˆPr                                               (43) 

Since the condition implies that 

( ) 1ˆˆPrlim =−
→


n

                   (44) 

Consistency is alternatively referred to as convergences in probability. Accordingly, we say 

that  has  as its probability limit which we write  =
→

ˆlimPr
n

 

Biased = ( )  −ˆE  (45) 

A biased is said to be consistent if absolute value of biased estimates increases or decreases as 

the sample sizes increases. 

 

2.6.2 Mean Square Error Estimator 

 

If we have a scalar parameter  to be estimated and the statistic T is used as an estimator, then 

the mean square error is given as: 

( ) ( )( ) ,,
2

−= TETMSE  (46) 

( ) ( )2,var  bT +=   

( )2−= TEMSE   

( ) ( )( )2−+−= TETETE   

( ) ( ) 2var bTMSE +=  (47) 

Meaning that mean square error is the sum of variance estimator and squared of bias estimator 

and is efficient if smaller value is obtained compare to other estimators. In the case of 

unbiased estimators, it is just the ratio of their variance and the one with smaller variance will 

be more efficient if among all the unbiased estimators of  is the one with the smallest 

variance then it been called the most efficient estimator of , that is for two unbiased 

estimators and for the parameter  with variance  and  respectively, the 

efficiency of relative  is defined by  
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It is also explained about the fit of the model to data set used and defined as: 

( )

pn

e

pn

yy
MSE i

n

i

n

i ii
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−
=


2

2
ˆ

 (49) 

 

2.6.3 Root of Mean Square Error Estimator 

 

The root mean square error of an estimator  is said to be more efficient if compared with 

root mean square error of another estimator and defined as: 

 

( )

pn

yy
RMSE

n

i ii

−

−
=


2
ˆ

 (50) 

 
2.6.4 Predictive Mean Square Error Estimator 

 

The predictive mean square error is defined as the average error in prediction y given x for 

future case not used in the construction of a prediction equation. There are two regression 

situations, x-random and x-controlled. In the case that x is random, both y and x are randomly 

selected. In the controlled situation, design matrices are selected by experimenters and only y 

is random. For case of presentation, simply consider only the x-random case. In x-random 

situations, the data are assumed a random sample from its parent distribution . 

Then, if  is a prediction procedure constructed using the present data, the prediction error 

can be decomposed as 

( ) ( )( )2ˆˆ XYEPE  −=                                                    (51) 

where the expectation 

( )( )2
XYmeanPMSE −=                             (52) 

2.7 Data Generation Processes 

 

A simulation study is performed to examine the magnitude of bias, mean square error, root of 

mean square error and predictive mean square error due to the presence of multicollinearity 

amongst explanatory variables in multiple linear regression model given as 

 += XY                                                                                    (53) 

 Let the sample size n equals to 25, 50, 100, 125, 150, 200, 250 and 1000 using 

Monte-Carlo simulation to replicate each sample size n in 1000 times, then data sets were 

generated for highly collinear variables X1, X2 and X3 over uniform distribution with 

minimum 0 and maximum 1 and induce multicollinearity in the variable X4 and X5 with 

assume error  and . 

 

Case one: to consider the case where x1, x2 and x3 are correlated with one another 

3,2,1),1,0,( == inrunifX
i

 (54) 

Case two: to consider the case where x2 and x3 are sum together with error e1=0.2 to generate 

random values of X4. 

1324
eXXX ++=  (55) 

Case three: to consider the case where X4 and error e2=0.1 are sum together to generate 

random values of X5. 

245
eXX +=  (56) 
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And the response variable Y is generated from covariate X with the true parameter and error 

term given as 

)(
55443322110

nrnormXXXXXY
i

++++++=   (57) 

Where  are 1.2, 2.3, 1.7, 2.5, 3.2 and 1.6,                       

 

3. Data Analysis, Results and Interpretation 

 

This section depicted the analysis, results and interpretation of comparison of lasso type 

estimators with ordinary least squares (OLS) estimator when the covariates were 

multicollinear. The correlation between variables with multicollinearity X4 and X5 regressed 

with variables X1, X2 and X3. 

Table 1: Correlation matrix of multicollinear covariates 

Rij X1 X2 X3 X4 X5 

X1 1.0000 -0.0593 0.07106 -0.0106 -0.0158 

X2 -0.0593 1.0000 0.0491 0.6463 0.6285 

X3 0.07106 0.0491 1.0000 0.6668 0.6513 

X4 -0.0106 0.6463 0.6668 1.0000 0.9778 

X5 -0.0158 0.6285 0.6513 0.9778 1.0000 

 

From Table 1, it can be seen that multicollinearity exist in a correlation matrix, where  that 

had value above 0.9 shows that multicollinearity is present in the variable X4 anX5. 

Table 2:  Variance Inflation Factor (VIF) for the detection of multicollinearity 

Variables 25 50 100 125 150 200 250 1000 

X1 1.1920 1.0322 1.0143 1.0072 1.0024 1.0024 1.0024 1.0119 

X2 2.5147 1.0322 3.7077 2.6136 3.1517 3.1517 3.1517 3.1313 

X3 3.4871 4.0314 3.7515 2.6493 3.3550 3.3550 3.3550 3.3019 

X4 25.5446 21.0742 26.9947 27.8870 26.0804 26.0804 26.0804 28.0683 

X5 21.3060 18.6614 21.5356 23.2851 21.5203 21.5203 21.5203 22.8219 

 

Table 2 depicts the detection of multicollinearity in the covariates using , this 

implies that X4 and X5 had severe multicollinearity due to the high VIF that exceeded 10 

which was the standard threshold. 

 

Objective 1: To examine the asymptotic properties of estimators 

Table 3: Absolute Bias and Mean Square Error of OLS Regression Estimate 

Sample 

sizes 

Absolute Bias of OLS Regression 

Estimate Coefficients 

Mean Square Error of OLS Regression 

Estimate Coefficients 

            
25 0.01

52 

0.03

27 

0.01

38 

0.02

14 

0.01

61 

0.02

72 

0.79

11 

0.54

67 

1.35

16 

1.73

67 

8.13

84 

7.01

88 

50 0.01

54 

0.04

34 

0.01

90 

0.02

33 

0.03

99 

0.02

42 

0.19

39 

0.24

78 

0.94

81 

0.94

63 

2.09

42 

1.72

69 

100 0.03

28 

0.03

09 

0.02

04 

0.02

92 

0.04

26 

0.03

60 

0.13

64 

0.13

09 

0.54

09 

0.42

76 

1.38

41 

1.03

93 

125 0.00

58 

0.01

83 

0.04

05 

0.00

28 

0.05

94 

0.04

13 

0.07

84 

0.09

78 

0.31

56 

0.26

02 

1.02

95 

0.80

09 

150 0.00

42 

0.00

48 

0.01

44 

0.01

03 

0.03

47 

0.02

43 

0.06

82 

0.08

37 

0.21

9 

0.23

39 

0.91

48 

0.73

29 

200 0.00

04 

0.00

12 

0.00

49 

0.00

74 

0.01

97 

0.01

55 

0.05

78 

0.07

04 

0.18

93 

0.16

79 

0.62

00 

0.52

64 



Bayo et. al., Malaysian Journal of Computing, 6 (1): 698 -714, 2021  

 708 

Sample 

sizes 

Absolute Bias of OLS Regression 

Estimate Coefficients 

Mean Square Error of OLS Regression 

Estimate Coefficients 

            
250 0.00

09 

0.00

08 

0.01

28 

0.00

86 

0.00

49 

0.01

31 

0.04

38 

0.05

82 

0.13

66 

0.13

68 

0.42

53 

0.35

51 

1000 0.00

06 

0.00

29 

0.00

60 

0.00

28 

0.00

12 

0.00

13 

0.00

96 

0.01

24 

0.03

76 

0.03

65 

0.12

70 

0.10

06 

Minim

um 

0.00

04 

0.00

08 

0.00

60 

0.00

28 

0.00

12 

0.00

13 

0.00

96 

0.01

24 

0.03

76 

0.03

65 

0.12

70 

0.10

06 

 

From Table 3, the study observed that there are increments in absolute bias from 

sample size 25 to 100 when considering β0 and β3 coefficients, also as the sample sizes 

increases the absolute bias for β0 and β3 coefficients began to decrease, that is consistency of 

estimator at larger sample sizes, sample above 100 could be regarded as benchmark for user 

of statistics when facing with the problem of multicollinearity. When considering β1 

coefficient there is increment in absolute bias from sample size 25 to 50 as the sample sizes 

increases the absolute bias for β1 coefficient began to decrease, that is consistency of estimator 

at larger sample sizes, sample above 50 could be regarded as benchmark for user of statistics 

when facing with the problem of multicollinearity. When considering β2 and β4 coefficients 

there are increments in absolute bias from sample size 25 to 125 as the sample sizes increases 

the absolute bias for β2 and β4 coefficients began to decrease, that is consistency of estimator 

at larger sample sizes, sample above 125 could be regarded as benchmark for user of statistics 

when facing with the problem of multicollinearity. When considering β5 coefficient there is 

decrement in absolute bias from sample size 25 to 50 as the sample sizes increases the 

absolute bias for β5 coefficient began to increase and decreases, that is inconsistency of 

estimator at larger sample sizes due to severe multicollinearity. 

The study also observed from Table 3, the coefficients β4 and β5 that had severe 

multicollinearity among the MSE of coefficients β0, β1, β2, β3, β4 and β5 also decreases as 

sample sizes increases, this attest to the fact that the study observed efficiency of the 

estimator and conformity to the law of large number.  

Table 4: Absolute Bias and Mean Square Error of Lasso Regression Estimate 

Sample 

sizes 

Absolute Bias of Lasso Regression 

Estimate Coefficients 

Mean Square Error of Lasso Regression 

Estimate Coefficients 

            
25 0.04

31 

0.00

19 

0.09

39 

0.04

89 

0.07

59 

0.04

49 

0.78

73 

0.56

78 

1.28

15 

1.74

55 

7.43

91 

5.91

81 

50 0.07

15 

0.05

75 

0.07

94 

0.06

60 

0.09

16 

0.12

59 

0.18

52 

0.25

25 

0.95

94 

0.92

85 

1.94

4 

1.65

54 

100 0.05

07 

0.02

52 

0.08

71 

0.07

00 

0.09

58 

0.04

95 

0.13

28 

0.12

84 

0.56

89 

0.45

32 

1.38

66 

1.01

00 

125 0.06

09 

0.05

65 

0.07

01 

0.03

77 

0.04

95 

0.03

39 

0.08

58 

0.10

87 

0.31

10 

0.24

59 

1.05

34 

0.83

38 

150 0.06

55 

0.04

25 

0.07

54 

0.09

37 

0.09

83 

0.05

70 

0.07

18 

0.08

41 

0.24

48 

0.26

61 

0.95

47 

0.71

66 

200 0.05

27 

0.02

73 

0.08

33 

0.07

40 

0.04

87 

0.00

98 

0.06

15 

0.06

89 

0.19

35 

0.19

67 

0.62

63 

0.52

15 

250 0.05

82 

0.04

21 

0.09

67 

0.08

89 

0.06

48 

0.01

18 

0.04

02 

0.05

34 

0.14

98 

0.15

94 

0.48

47 

0.37

60 

1000 0.04

94 

0.03

26 

0.07

34 

0.06

35 

0.06

90 

0.03

54 

0.01

26 

0.01

34 

0.04

52 

0.04

35 

0.12

42 

0.09

71 

Minim

um 

0.04

31 

0.00

19 

0.07

01 

0.03

77 

0.04

87 

0.00

98 

0.01

26 

0.01

34 

0.04

52 

0.04

35 

0.12

42 

0.09

71 

 

From Table 4, the study observed that there are increment and decrement in absolute 

bias varying from sample size to sample size when considering β0, β1, β2, β3, β4 and β5 
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coefficients as the sample sizes increases the absolute bias of coefficients began to decrease 

and increases that is inconsistency of estimator at varying sample sizes.  

The study also observed from coefficients β4 and β5 that had severe multicollinearity 

among the MSE of coefficients β0, β1, β2, β3, β4 and β5 also decreases as sample sizes 

increases, this attest to the fact that the study observed efficiency of the estimator and 

conformity to the law of large number.  

Table 5: Absolute Bias and Mean Square Error of Ridge Regression Estimate 

Sample 

sizes 

Absolute Bias of Ridge Regression 

Estimate Coefficients 

Mean Square Error of Ridge Regression 

Estimate Coefficients 

            
25 0.46

03 

0.31

14 

0.16

69 

0.06

48 

0.69

10 

0.51

60 

0.85

19 

0.52

75 

0.76

16 

0.76

14 

0.90

59 

0.72

68 

50 0.26

67 

0.13

10 

0.22

15 

0.09

41 

0.78

74 

0.43

61 

0.22

93 

0.20

56 

0.42

96 

0.33

98 

0.77

70 

0.34

53 

100 0.32

43 

0.23

88 

0.13

84 

0.06

03 

0.75

92 

0.44

83 

0.20

91 

0.16

13 

0.21

09 

0.15

85 

0.64

10 

0.26

87 

125 0.29

37 

0.19

67 

0.21

24 

0.08

55 

0.79

83 

0.45

20 

0.15

52 

0.12

05 

0.20

12 

0.12

77 

0.68

42 

0.25

00 

150 0.32

09 

0.20

63 

0.16

70 

0.10

56 

0.80

24 

0.45

38 

0.16

36 

0.11

19 

0.14

26 

0.12

70 

0.68

70 

0.24

56 

200 0.35

21 

0.22

44 

0.09

55 

0.03

00 

0.75

47 

0.45

83 

0.17

52 

0.10

76 

0.08

95 

0.08

53 

0.60

16 

0.24

06 

250 0.29

42 

0.19

69 

0.18

53 

0.12

55 

0.80

67 

0.45

41 

0.11

86 

0.08

23 

0.09

37 

0.07

93 

0.67

54 

0.22

86 

1000 0.28

71 

0.19

75 

0.18

37 

0.13

84 

0.80

63 

0.45

55 

0.09

04 

0.04

90 

0.05

06 

0.03

73 

0.65

64 

0.21

36 

Minim

um 

0.26

67 

0.13

10 

0.09

55 

0.03

00 

0.75

47 

0.43

61 

0.09

04 

0.04

90 

0.05

06 

0.03

73 

0.60

16 

0.21

36 

 

 From Table 5, the study observed that there are increment and decrement in absolute 

bias varying from sample size to sample size when considering β0, β1, β2, β3, β4 and β5 

coefficients as the sample sizes increases the absolute bias of coefficients began to decrease 

and increases that is inconsistency of estimator at varying sample sizes.  

The study observed from coefficients β0, β1, β2, β3, β4 and β5 that had severe 

multicollinearity the mean square error of coefficients β0, β1, β2, β3, β4 and β5 also decreases 

as sample sizes increases, these attest to the fact that the study observed efficiency of the 

estimator and conformity to the law of large number.  

Table 6:  Absolute Bias and Mean Square Error of Enet Regression Estimate 

Sample 

sizes 

Absolute Bias of Elastic Net Coefficients Mean Square Error of Elastic Net 

Coefficients 

            
25 0.00

90 

0.00

22 

0.01

10 

0.00

98 

0.00

45 

0.00

10 

0.72

83 

0.54

13 

1.33

8 

1.74

24 

7.66

95 

6.27

43 

50 0.05

46 

0.02

72 

0.04

47 

0.04

86 

0.11

18 

0.12

48 

0.16

68 

0.23

94 

0.92

46 

0.92

87 

1.76

69 

1.51

08 

100 0.05

62 

0.04

05 

0.01

78 

0.02

61 

0.04

83 

0.03

41 

0.13

43 

0.12

96 

0.49

77 

0.41

87 

1.04

95 

0.81

13 

125 0.05

70 

0.04

59 

0.02

28 

0.04

32 

0.13

82 

0.13

39 

0.08

02 

0.10

09 

0.30

98 

0.24

25 

0.77

51 

0.59

27 

150 0.06

13 

0.03

72 

0.03

22 

0.05

52 

0.05

72 

0.05

99 

0.07

11 

0.08

32 

0.22

87 

0.24

89 

0.74

31 

0.57

01 

200 0.05

18 

0.02

58 

0.05

02 

0.04

39 

0.07

15 

0.08

00 

0.06

14 

0.06

84 

0.18

22 

0.18

64 

0.50

25 

0.43

01 

250 0.05

75 

0.03

68 

0.04

83 

0.04

56 

0.10

69 

0.11

29 

0.04

22 

0.05

57 

0.13

45 

0.14

43 

0.36

01 

0.30

08 
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1000 0.05

85 

0.03

90 

0.04

30 

0.04

18 

0.08

76 

0.09

08 

0.01

32 

0.01

41 

0.03

70 

0.03

77 

0.10

21 

0.08

29 

Minim

um 

0.00

90 

0.00

22 

0.01

10 

0.00

98 

0.00

45 

0.00

10 

0.01

32 

0.01

41 

0.03

70 

0.03

77 

0.10

21 

0.08

29 

 

From Table 6, the study observed that there are increment and decrement in absolute 

bias varying from sample size to sample size when considering β0, β1, β2, β3, β4 and β5 

coefficients as the sample sizes increases the absolute bias of coefficients began to decrease 

and increases that is inconsistency of estimator at varying sample sizes.  

The study observed from coefficients β0, β1, β4 and β5 that had severe 

multicollinearity, the mean square error of coefficients β0, β1, β2, β3, β4 and β5 also decreases 

as sample sizes increases, these attest to the fact that the study observed efficiency of the 

estimator and conformity to the law of large number.  

 

Objective 2:  Compare lasso, ridge and elastic net estimators with ordinary least squares 

and interpretation. 

Table 7: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n= 25 

Sample size 25 Estimators 
      

Absolute Bias 

Ols 0.0152 0.0327 0.0138 0.0214 0.0161 0.0272 

Lasso 0.0431 0.0019 0.0939 0.0489 0.0759 0.0449 

Ridge 0.4603 0.3114 0.1669 0.0648 0.6910 0.5160 

Enet 0.0090 0.0022 0.0110 0.0098 0.0045 0.0010 

MSE 

Ols 0.7911 0.5467 1.3516 1.7367 8.1384 7.0188 

Lasso 0.7873 0.5678 1.2815 1.7455 7.4391 5.9181 

Ridge 0.8519 0.5275 0.7616 0.7614 0.9059 0.7268 

Enet 0.7283 0.5413 1.338 1.7424 7.6695 6.2743 

  

From Table 7, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, the 

study observed that Elastic net is consistent and outperformed other estimators with minimum 

values and mean square error of Ridge is efficient. These served as benchmark regarded 

sample size of 25 when facing with problem of multicollinearity.  

Table 8: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=50 

Sample size 50 Estimators 
      

Absolute Bias 

Ols 0.0154 0.0434 0.0190 0.0233 0.0399 0.0242 

Lasso 0.0715 0.0575 0.0794 0.0660 0.0916 0.1259 

Ridge 0.2667 0.1310 0.2215 0.0941 0.7874 0.4361 

Enet 0.0546 0.0272 0.0447 0.0486 0.1118 0.1248 

MSE 

Ols 0.1939 0.2478 0.9481 0.9463 2.0942 1.7269 

Lasso 0.1852 0.2525 0.9594 0.9285 1.9440 1.6554 

Ridge 0.2293 0.2056 0.4296 0.3398 0.7770 0.3453 

Enet 0.1668 0.2394 0.9246 0.9287 1.7669 1.5108 

 

From Table 8, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, the 

study observed that Ordinary least squares is consistent and outperformed other estimators 

with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 50 when facing with problem of multicollinearity. 

Table 9: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=100   

Sample size 100 Estimators 
      

Absolute Bias 

Ols 0.0328 0.0309 0.0204 0.0292 0.0426 0.0360 

Lasso 0.0507 0.0252 0.0871 0.0700 0.0958 0.0495 

Ridge 0.3243 0.2388 0.1384 0.0603 0.7592 0.4483 

Enet 0.0562 0.0405 0.0178 0.0261 0.0483 0.0341 
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MSE 

Ols 0.1364 0.1309 0.5409 0.4276 1.3841 1.0393 

Lasso 0.1328 0.1284 0.5689 0.4532 1.3866 1.0100 

Ridge 0.2091 0.1613 0.2109 0.1585 0.6410 0.2687 

Enet 0.1343 0.1296 0.4977 0.4187 1.0495 0.8113 

 

From Table 9, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, the 

study observed that Ordinary least squares is consistent and outperformed other estimators 

with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 100 when facing with problem of multicollinearity. 

 

Table 10: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=125 

Sample size 125 Estimators 
      

Absolute Bias 

Ols 0.0058 0.0183 0.0405 0.0028 0.0594 0.0413 

Lasso 0.0609 0.0565 0.0701 0.0377 0.0495 0.0339 

Ridge 0.2937 0.1967 0.2124 0.0855 0.7983 0.4520 

Enet 0.0570 0.0459 0.0228 0.0432 0.1382 0.1339 

MSE 

Ols 0.0784 0.0978 0.3156 0.2602 1.0295 0.8009 

Lasso 0.0858 0.1087 0.3110 0.2459 1.0534 0.8338 

Ridge 0.1552 0.1205 0.2012 0.1277 0.6842 0.2500 

Enet 0.0802 0.1009 0.3098 0.2425 0.7751 0.5927 

 

From Table 10, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, 

the study observed that Ordinary least squares is consistent and outperformed other estimators 

with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 125 when facing with problem of multicollinearity. 

Table 11: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=150  

Sample size 150 Estimators 
      

Absolute Bias 

Ols 0.0042 0.0048 0.0144 0.0103 0.0347 0.0243 

Lasso 0.0655 0.0425 0.0754 0.0937 0.0983 0.0570 

Ridge 0.3325 0.2239 0.1606 0.1408 0.8168 0.4477 

Enet 0.0727 0.0429 0.0309 0.0148 0.1020 0.0754 

MSE 

Ols 0.0682 0.0837 0.2190 0.2339 0.9148 0.7329 

Lasso 0.0718 0.0841 0.2448 0.2661 0.9547 0.7166 

Ridge 0.1743 0.1218 0.1361 0.1379 0.7072 0.2427 

Enet 0.0750 0.0807 0.2110 0.2505 0.6986 0.5609 

 

From Table 11, based on the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, the 

study observed that Ordinary least squares is consistent and outperformed other estimators 

with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 150 when facing with problem of multicollinearity. 

Table 12: Comparison of the Three Methods with OLS For Absolute Bias and MSE at n=200 

Sample size 200 Estimators 
      

Absolute Bias 

Ols 0.0004 0.0012 0.0049 0.0074 0.0197 0.0155 

Lasso 0.0527 0.0273 0.0833 0.0740 0.0487 0.0098 

Ridge 0.3625 0.2422 0.1088 0.0291 0.7656 0.4615 

Enet 0.0593 0.0382 0.0383 0.0484 0.1195 0.1207 

MSE 

Ols 0.0578 0.0704 0.1893 0.1679 0.6200 0.5264 

Lasso 0.0615 0.0689 0.1935 0.1967 0.6263 0.5215 

Ridge 0.1827 0.1135 0.0962 0.0778 0.6192 0.2451 

Enet 0.0649 0.0769 0.1936 0.1858 0.5341 0.4461 

 

From Table 12, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, 

the study observed that Ordinary least squares is consistent and outperformed other estimators 
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with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 200 when facing with problem of multicollinearity. 

 
Table 13: Comparison of the Three Methods with OLS for Absolute Bias and MSE at n=250 

Sample size 250 Estimators 
      

Absolute Bias 

Ols 0.0009 0.0008 0.0128 0.0086 0.0049 0.0131 

Lasso 0.0582 0.0421 0.0967 0.0889 0.0648 0.0118 

Ridge 0.2942 0.1969 0.1853 0.1255 0.8067 0.4541 

Enet 0.0575 0.0368 0.0483 0.0456 0.1069 0.1129 

MSE 

Ols 0.0438 0.0582 0.1366 0.1368 0.4253 0.3551 

Lasso 0.0402 0.0534 0.1498 0.1594 0.4847 0.3760 

Ridge 0.1186 0.0823 0.0937 0.0793 0.6754 0.2286 

Enet 0.0422 0.0557 0.1345 0.1443 0.3601 0.3008 

 

From Table 13, considering, the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, 

the study observed that Ordinary least squares is consistent and outperformed other estimators 

with minimum values and mean square error of Ridge is efficient. These served as benchmark 

regarded sample size of 250 when facing with problem of multicollinearity. 

Table 14: Comparison of the Three Methods with OLS for Absolute Bias and MSE at n=1000 

Sample size 1000 Estimators 
      

Absolute Bias 

Ols 0.0006 0.0029 0.006 0.0028 0.0012 0.0013 

Lasso 0.0494 0.0326 0.0734 0.0635 0.0690 0.0354 

Ridge 0.2871 0.1975 0.1837 0.1384 0.8063 0.4555 

Enet 0.0585 0.0390 0.0430 0.0418 0.0876 0.0908 

MSE 

Ols 0.0096 0.0124 0.0376 0.0365 0.1270 0.1006 

Lasso 0.0126 0.0134 0.0452 0.0435 0.1242 0.0971 

Ridge 0.0904 0.0490 0.0506 0.0373 0.6564 0.2136 

Enet 0.0132 0.0141 0.0370 0.0377 0.1021 0.0829 

 

From Table 14, considering the absolute bias of coefficients β0, β1, β2, β3, β4 and β5, 

the study observed that OLS is consistent and outperformed other estimators with minimum 

values and mean square error of Ordinary least squares is efficient. These served as 

benchmark regarded sample size of 1000 when facing with problem of multicollinearity. 

Table 15: Comparison of the Three Methods with OLS for PMSE 

Estimator 25 50 100 125 150 200 250 1000 

Ols 1.3065 0.9387 1.2422 0.9978 0.9962 1.0642 0.9975 1.0005 

Lasso 1.2955 0.9312 1.2465 0.7129 1.0293 1.0105 0.9550 1.0007 

Ridge 1.3110 0.9584 1.2594 0.8919 1.0096 1.1552 1.0369 1.0278 

Enet 1.3039 0.9276 1.2449 0.9149 0.9319 1.0294 0.9122 1.0021 

 

Table 15 depicts the comparison of the predictive mean square error of three different 

methods with OLS using different sample sizes. It shows that at n=25, Lasso is efficient for 

precision, at n=50, Elastic net is efficient for precision and at n=100 and 1000, OLS is good 

for precision.            

 

4. Findings  

 

This study investigated the impact of multicollinearity on linear regression estimates of lasso, 

ridge and elastic net compared with ordinary least squares measure on criteria of absolute 

bias, mean square error and predictive mean square error. From the analysis, it can be clearly 

observed that the three methods applied can be used to solve the problem of multicollinearity. 

Objective one is to examine the asymptotic properties of estimators. From Table 3, the study 

observed that, there are increment in absolute bias of OLS from one sample size to another 
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when considering parameter estimates as the sample sizes is increasing the absolute bias 

began to decrease showed that OLS is consistent. It can be observed that, there is decrement 

in mean square error of OLS as sample sizes increases when considering parameter estimates 

that is efficiency of an estimator. From Table 4, 5 and 6, there are increment and decrement in 

absolute bias of lasso, ridge and elastic net as the sample sizes increases when considering 

parameter estimates that are fluctuate alternately showed inconsistency of the estimators. 

Table 4, 5 and 6 also observed that, there are decreases in mean square error of lasso, ridge 

and elastic net as the sample sizes increases when considering parameter estimates, it implies 

that estimators were efficient. As for the second objective of the study, a comparison on the 

three lasso type estimators with OLS is presented in Table 7 that observed that, absolute bias 

of elastic net is consistent and mean square error of ridge is efficient when considering 

parameter estimates with minimum value at sample sizes of 25. Table 8, 9, 10, 11, 12 and 13, 

depict that, absolute bias of OLSs is consistent and mean square error of ridge is efficient 

when considering parameter estimates with minimum value at sample sizes of 50, 100, 125, 

150, 200 and 250 respectively. 

 

5. Conclusion 

 

This study presents the impact of multicollinearity on the methods of estimating the 

parameters of a regression model. From the analysis, it can be clearly observed that some 

methods applied can be used to solve the problem of multicollinearity when the sample size is 

small and moderate. Judging from the analysis, it can be observed that: In examining the 

asymptotic properties of an estimator, absolute bias of OLS is consistent and mean square 

error for lasso, ridge, elastic net and OLS asymptotically decrease as the sample size increases 

thus, they are asymptotically efficient. To compare the three methods of lasso type estimators 

with OLS in solving the problem of multicollinearity showed that ridge outperform other 

estimators followed by elastic net. Focusing on multicollinearity, this study seeks to 

contribute to recent efforts to improve researchers’ methodological approaches to the analysis 

of linear regression model in some particular areas such as: a) When focusing on small and 

moderate sample sizes in the presence of multicollinearity, ridge regression is recommended. 

On the other hand, the OLS is recommended for large sample sizes i.e., assumption of 

ordinary least square is valid and b) the major variables that influence multicollinearity. 
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