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ABSTRACT 

 

Ensuring the accuracy of an analytical solution is important in modeling real 

engineering structures. For determining the stress-deformation condition of a 

thin-walled beam structure in bending, inadequately, the simple beam formula 

can only provide uniform average stress-deformation distribution at specific 

cross-sectional elevations. The recently developed analytical solution for 

determining stress-deformation conditions with consideration of the shear lag 

effect of a prismatic thin-walled box beam subjected to transverse load causing 

bending using classical quadratic deplanation function did not provide an 

accurate but rather a good estimate when compared with finite element 

analysis results. In this paper, the objective of the study was to see if the 

accuracy can be improved. The same Vlasov’s method was used. The method 

was developed using Calculus of Variations based on a Stress-form stationary 

condition complementary energy which included the shear lag effect. All 

calculations were computerized using the software MAPLE 18 which assisted 

in getting quick results (especially for preliminary design studies) for various 

geometries, material properties, and loading conditions. Several deplanation 

functions were introduced. Two variants of the quadratic functions, i.e. x2y3 and 

x2y, and the quartic functions, i.e. x4y3 and x4y were used to find the best match 

against empirical data and FEA (finite element analysis) results.  The finding 

was that the quartic variant of the deplanation functions provided improved 

matching with experimental data as well as FEA results. Noteworthy to point 
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out that the characteristic of the functions with quartic-x or x4 of having almost 

flat variation in the center part enhances matching with the experimental data. 

Moreover, the characteristic of the function with cubic-y or y3 of having steeper 

slopes enhances matching with the FEM results at the edge. 

 

Keywords: Thin-walled beam bending, Deplanation function, Thickness-

radius ratio, Shear lag, Analytical vs Experiment  

 

 
Introduction 
 

Thin-walled box beams are widely used in engineering structures such as civil, 

mechanical, and aerospace for bridges, buildings, aircrafts, and rockets. The 

basic simple beam solution for determining the stress-deformation of beams in 

bending can only provide uniform average stress-deformation distribution at 

specific cross-sectional elevations which is inadequate for thin-walled beams 

that experience the shear lag effect. Hence, an analytical formula or calculation 

method which includes the shear lag effect is needed to provide a more reliable, 

and more accurate representative estimate of this stress-deformation condition.  

The developed analytical solution in [1] based on Vlasov’s method [2] 

for determining stress-deformation conditions with consideration of the shear 

lag effect of a prismatic thin-walled box beam subjected to transverse load 

causing bending using classical quadratic deplanation function did not provide 

an accurate but rather a good estimate when compared with finite element 

analysis results. In this paper, the objective of the study was to see if the 

accuracy can be further improved using the same method but only changing the 

deplanation/distortion functions. This Vlasov’s method was developed using 

Calculus of Variations based on a Stress-form stationary condition 

complementary energy which included the shear lag effect. All calculations 

were computerized using the software MAPLE 18 [3] which assisted in getting 

quick results (especially for preliminary design studies) for various geometries, 

material properties, and loading conditions.  

In this paper, several deplanation functions were introduced. Two 

variants of the quadratic functions, i.e. x2y3 and x2y, and the quartic functions, 

i.e. x4y3 and x4y were used to find the best match against empirical data and 

FEA (finite element analysis) results.   

The finding was that the quartic variant of the deplanation functions 

provided improved matching with experimental data as well as FEA results. 

Noteworthy to point out that the characteristic of the functions with quartic-x 

or x4 of having almost flat variation in the center part enhances matching with 

the experimental data. Furthermore, the characteristic of the function with 

cubic-y or y3 of having steeper slopes enhances matching with the FEM results 

at the edge. 
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Literature background 
 

Kadarman et al. [1] analytically developed a version of Vlasov’s Stress-form 

using the variational method and found very close matching of the analytical 

Stress-form and recognized Displacement-form from [4]. Comparison with 

FEM showed that the Stress-form results were matching well at the high stress 

region and were slightly higher at the intermediate stress area. 

In [5], using the variational method, both elastic and inelastic solutions 

were shown. Here, Lin and Zhao studied the effect of shear lag in steel box 

beams. The verification of the analytical method was done by experimental 

means of testing on steel box beams. Comparison of the proposed variation 

method with experimental data found that the model predicts quite well the 

steel box beams’ plastic normal strain distribution and deflection.  

In [6], using the variational principle, an analytical solution taking into 

account the shear lag was presented by Chen et al. Using the principle of 

superposition, the problem of loaded simply supported and cantilever beams 

were solved. The calculated normal stress was well predicted. 

In this paper, an analytical method developed recently in [1] was verified 

further by comparison with experimental data from [5] – [8] and also by FEM. 

Flexural bending of a thin-walled box can cause Deplanation/Distortion due to 

the shear lag effect (Figure 1).  

 

 
 

Figure 1: Box beam flexural bending causes contraction of dside to differ from 

dctr [1]. 
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Analytical Formulation 

 

First Step – establishing stresses 
The hollow doubly-symmetric prismatic thin-walled box beam in Figure 2 is 

clamped at one end and its section is centered at the origin of the x, y and, z 

axes. It is subjected to the transversal distributed load wy acting through the 

elastic axis that causes shear Vy = ∫ wy(z)dz
z

0
 and moment Mx = ∫ Vy(z)dz

z

0
. 

As in [1, 9] the analytical solution is derived based on these loads. 

 

 
 

Figure 2: Hollow Box beam with distributed load wy [1]. 

 

Using curvilinear coordinate s as in [10, 11], the equations of equilibrium 

similar to equations 3.90a and 3.90b in [12]:  

 
∂Nz

∂z
+

∂Nzs

∂s
= 0       ,       

∂Nzs

∂z
+

∂Ns

∂s
= 0                                  (1) 

 

From Equation (1), Nzs and Ns can be written in term of Nz, 

 

Nzs = − ∫
∂Nz

∂z
ds + q0(z)                                      (2) 

                                

Ns = ∬
∂2Nz

∂z2
ds2 − [∫ q0

′ (z)ds] + n(z)                             (3) 
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Let the longitudinal stress resultant, Nz be the combination of a simple 

beam solution and a term with the deplanation function φ4̅̅̅̅ (s) which shapes the 

stress resultant distribution due to distortion along the s-contour:    

 

    Nz = Nz,SB + X4φ4                                             (4) 

 

where            Nz,SB = −
Mx

Ix

yhi      (𝐒imple 𝐁eam) 

 

X4(z) ≡ deplanation intensity multiplier along z 

 

φ4 = φ4̅̅̅̅ + C1Nz,SB        ,        φ4̅̅̅̅ = x2𝑦 or x2y3or x4𝑦 or x4y3 

 

C1 ≡  orthogonalization coefficient 
 

Ix= centroidal area moment of inertia. C1 is determined by orthogonalization of 

functions [13] (also see Appendix) to ensure that the resulting distribution of 

stress resultants self-equilibrate (self-balance) in the section to preserve force 

equilibrium with the simple beam uniform stress level: 

 

∮ Nz,SBφ
4

ds = 0 

 

Now continue on with Nzs, insert Equation (4) into Equation (2): 

 

         Nzs = − ∫(Nz,SB
′ + X4

′ φ4) ds + q0(z)                           (5) 

 

Substitute qQ(s, z) = − ∫ Nz,SB
′ ds into Equation (5) and rearrange: 

 

Nzs = qQ(s, z) + q0(z) − X4
′ ∫ φ4 ds                            (6) 

 

The first two terms of Equation (6) are simple beam solutions. And: 

 

qQ(s, z) =
VyQx

∆

Ix

 

 

 is familiarly known as the shear flow that varies with the first moment of area: 

 

Qx
∆ = ∫ y̅ds

s

0
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while q0(z) is the constant shear flow. For the analytical solution of q0(z), the 

torsional moment equilibrium is used:  

 

Mz = ∮ Nzsρds 

 

There is no torsional moment and wy is acting through the elastic axis, hence 

Mz is zero: 

 

0 = ∮ Nzsρds                                              (7) 

  

Insert Equation (6) into Equation (7): 

 

0 = ∮ {qQ(s, z) + q0(z) − X4
′ ∫ φ4 ds} ρds 

 

Take q0(z) out of the integral since it is independent of s and use ω = ∮ ρds: 

 

 q0(z) =
1

ω
[− ∮ qQ(s, z)ρds + X4

′ ∮ (∫ φ4ds) ρds]              (8) 

 

Insert Equation (8) into Equation (6) and let: 

 

qMz = qQ(s, z) −
1

ω
∮ qQ(s, z)ρds 

and 

𝑏4(𝑠) = ∫ φ4ds −
1

ω
∮ (∫ φ4ds) ρds 

Hence: 

 

Nzs = qM𝑧 − X4
′ b4                                         (9) 

 

Second step – using variational calculus  
Variational calculus is explained comprehensively in [14]. The analytical 

solution of  X4(z) is obtained using the Variational Principle of the Least Work. 

After substituting the stresses into the Potential energy functional, 

 

U = ∫ Φ(X4,  X4
′ , z)dz

L

0

 

 

and minimization of this functional, a differential equation of displacement 
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compatibility is produced. Then after solving the differential equation and 

applying the boundary conditions the complete solution for Nz and Nzs can be 

obtained. In this case:  

 

U = ∫ [∮ (
Nz

2

2Eh
+

Nzs
2

2Gh
+

Ns
2

2Eh
) ds] dz

𝐿

0

 

.  

Ns has relative negligible value as extensively discussed in [15], hence:  

 

U =
1

2
∫ [∮ (

Nz
2

Eh
+

Nzs
2

Gh
) ds] dz

𝐿

0

 

  

Insert Equation (4) and Equation (9): 

 

U =
1

2
∫ ∮ {C11[Nz,SB + X4φ4]

2
+ C33[qM𝑧 − X4

′ b4]2} dsdz

L

0

 

 

where C11 = 1
Eh⁄  and C33 = 1

Gh⁄ . Let stress function, 

 

Φ =
1

2
∮ {C11[Nz,SB + X4φ4]

2
+ C33[qM𝑧 − X4

′ b4]2} ds 

 

To minimize: 

 

U = ∫ Φ(X4,  X4
′ , z)dz

L

0

 

 

the Euler-Lagrange equation: 

 
d

dz

∂Φ

∂X4
′ −

∂Φ

∂X4

= 0 

 

must be satisfied. Hence insert Φ and differentiate: 

 
∂Φ

∂X4
′           and         

∂Φ

∂X4

 

 

and substitute to get: 
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d

dz
{∮[−C33(qM𝑧 − X4

′ b4)b4]ds} − ∮[C11(Nz,SB + X4φ4)φ4]ds = 0  

 

Continue to differentiate with respect to z, 

 

∮[−C33(b4qM𝑧
′ − b4

2X4
" − 2b4b4

′ X4
′ + b4

′ qM𝑧)]ds

− ∮[C11(Nz,SB + X4(z)φ4)φ4]ds = 0 

 

And expanding: 

 

∮ C33b4
2X4

" ds + ∮ C332b4b4
′ X4

′ ds + ∮ C11X4φ4
2ds

= ∮ C11Nz,SBφ4ds + ∮ C33b4qM𝑧
′ ds + ∮ C33b4

′ qM𝑧ds 

 

As b4 is independent of z, hence b4
′ = 0 and X4and X4

"  are independent of s, so 

they can be taken out of the integrations: 

 

X4
" ∮ C33b4

2ds − X4 ∮ C11φ4
2ds = ∮ C11Nz,SBφ4ds + ∮ C33b4qM𝑧

′ ds 

 

And simplifying, produces a second order differential equation: 

 

A11X4
" − A12X4 = B1 + B2 

where 

A11 = ∮ C33b4
2ds         ,        A12 = ∮ C11φ4

2ds, 

 

 B1 = ∮ C11Nz,SBφ4ds        ,         B2 = ∮ C33b4qM𝑧
′ ds 

 

Derived from calculus of variations, the natural boundary condition (condition 

of clamping) for determining constants of the solution at z = L: 

  
∂Φ

∂X4
′ = 0   →       ∮ C33 qM𝑧b4ds − X4

′ ∮ C33b4
2ds = 0             (10) 

 

And at z = 0, static equilibrium boundary condition: 

 

∮ Nzyds = Mx = 0 
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Finite Element Modeling 
 

For the finite element modeling, 3-D solid elements were used instead of 2-D 

plate elements because of the need to compare with experimental data measured 

at the surface which 3-D solid elements can provide direct comparative values. 

The FEA are limited to linear static isotropic material meaning that plastic 

deformation beyond yielding was not considered. Quarter models were created 

and analyzed using the SOLIDWORKS software 2019 Education Edition [16] 

to represent the simply-supported structure with symmetry boundary 

constraints imposed at the longitudinal and center transverse planes and fixed 

vertical displacement at the bottom edge of the end of the transverse plane while 

25% of the full vertical load were applied at the outside edge of the center 

transverse plane as shown in Figure 3. 

 

 
 

Figure 3: A sample of the Quarter FE Model (bottom view) showing how 

boundary conditions and load are imposed. 

 

 

Comparison with Experimental Data and/or FEM 
 

To evaluate the analytical Stress-form method developed, it was compared to 

existing experimental data by Ahmad stated in [5], [6], [8] and by Zhibin stated 

in [5], [6], [7] and newly acquired FEM results. Both Ahmad’s and Zhibin’s 

tests were conducted using simply-supported beams with measured strains at 

the mid-span, therefore these data were compared to the Stress-form method 

solutions at the fixed cantilever end to have a similar effect.  

For the comparisons, the following two evaluation aspects were 

considered: 

1. Geometry satisfying thin-walled definition. In Allen and Haisler [17]: thin-

walled means a bar of circular cross- section to be one in which the 

 



A Halim Kadarman*, Nabilah Azinan, Junior Sarjit Singh Sidhu, Solehuddin Shuib 

202 

 

thickness t is less than or equal to 5 percent of the average radius, or 
𝑡

𝑟𝑎𝑣𝑔
≤

 0.05. 

2. Matching experimental data and/or FEM results with solutions of the 

analytical Stress-form method using several Deplanation functions,  φ4̅̅̅̅ . 

Table 1 summarized the comparisons that were done and the details are 

described subsequently. 

 

Table 1: Summary of Comparisons 

 

No. Specimens  Comparison items 
𝑡

𝑟𝑎𝑣𝑔

 
Thin-

walled? 

1 300 x  100 x 3 mm 
Experiment, FEM, 

x4y3, x4y, x2y3 & x2y 

3

1
2⁄ (150 + 50)

= 0.03 
Yes 

2 5 x 2 x 0.1875 in 
Experiment, FEM, 

x4y3, x4y, x2y3 & x2y 

0.1875

1
2⁄ (

5
2

+ 2
2
)

= 0.107 

No 

3 400 x 100 x 3 mm 
FEM, x4y3, x4y, x2y3 

& x2y 
0.024 Yes 

4 200 x 100 x 3 mm 
FEM, x4y3, x4y, x2y3 

& x2y 
0.04 Yes 

 

First comparison (Analytic, Data, and FEM) 
The first experimental data for comparison comes originally from work done 

by Ahmad [5], [6], [7]. The box beam used in the experiment from Ahmad was 

a simply-supported beam that had a span length and cross-sectional dimensions 

of 1 m and 300 x 100 x 3 mm, respectively. A load of 6 kN was imposed at the 

mid-span as shown in Figure 4. Stresses were calculated from the strains 

measured at the mid-span [5]. The comparison result is shown in Figure 5. 

 

 
(a) 
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(b) 

Figure 4: (a) Geometry of the Structure (b) Quarter FEM of the Structure with 

dimensions in meters. 

 

 

  
 

Figure 5: First Comparison of Experiment, Various Deplanation Functions, 

and FEM. 

 

Second comparison (Analytic, Data, and FEM)  
The second experimental data for comparison comes from a test carried out by 

Zhibin [5], [6]. The box beam used in the experiment by Zhibin [5], [6] was 

also a simply-supported beam which had a span length and cross-sectional 

dimensions of 21 inches (533 mm) and 5 x 2 x 3/16 inches (127 x 50.8 x 4.763 
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mm), respectively as shown in Figure 6. Again, at the mid-span, 45.43 kN (10.2 

kips) load was imposed. And from the measured strains on the top flange’s 

outer surface at mid-span, stresses were calculated. The comparison result is 

shown in Figure 7. 

 

  
 

(a) 

 
 

(b) 

Figure 6: (a) Geometry of the Structure (b) Quarter FEM of the Structure with 

dimensions in meters. 
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Figure 7: Second Comparison of Experiment, Various Deplanation Functions, 

and FEM. 

   

Third and Fourth comparisons (Analytic and FEM only)  
The third and fourth comparisons were with FEM only and also for a simply-

supported beam that had the same span length and cross-sectional dimensions 

of 1 m and 400 x 100 x 3 mm and 200 x 100 x 3 mm, respectively. A load of 6 

kN was imposed at the mid-span. The third and fourth comparison results are 

shown in Figures 8 and 9, respectively. 
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Figure 8: Third Comparison of Various Deplanation Functions, and FEM. 

 

 

 
 

Figure 9: Fourth Comparison of Various Deplanation Functions, and FEM. 
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Discussion 
 

The structure used in the first comparison had a small 
𝑡

𝑟𝑎𝑣𝑔
≈ 0.030 which 

satisfies the thin-walled structure definition. In comparing the analytical Stress-

form Method’s Deplanation functions with the experimental data, functions 

with quartic-x or x4 provided the closest matches as opposed to quadratic-x or 

x2, even though both of them slightly underestimated at most of the central part. 

However, the function φ4̅̅̅̅ = x4y3, i.e. a combination of quartic-x and cubic-y 

function provides the best match combination of the experimental data curve 

as well as the FEM results near the edge part. It is interesting to note that the 

characteristic of the functions with quartic-x or x4 of having almost flat 

variation in the center part enhances matching with the experimental data here. 

Moreover, the characteristic of the function with cubic-y or y3 having steeper 

slopes enhances matching with the FEM results at the edge. Important to note 

that in contrast, the classical deplanation function was φ4̅̅̅̅ = x2𝑦 as used in [1, 

3]. 

The structure used in the second comparisons had a relatively large 
𝑡

𝑟𝑎𝑣𝑔
≈ 0.107 which also does not satisfy the thin-walled structure definition. In 

comparing the analytical Stress-form Method Deplanation functions with the 

experimental data, again functions with quartic-x or x4 provided better matches 

as opposed to quadratic-x or x2, even though in this case both of them slightly 

overestimated at some of the parts but also significantly at other parts especially 

with respect to the function  φ4̅̅̅̅ = x4𝑦3. However, the function  φ4̅̅̅̅ = x4𝑦, i.e. 

a combination of quartic-x and linear-y function provides a better combined 

match for both the experimental data curve and FEM results.  

Overall, the comparison of the second structure showed less satisfactory 

matching because it does not satisfy the thin-walled structure definition and 

probably the measured experimental data have significant errors. Figure 10 

compares the differences of stresses from the FEM results between the outside 

and inside surfaces of both structures. Here it is observed that in the second 

structure, the difference of the stresses on the inside and the outside surfaces is 

significant in comparison to the first structure. As a result, the second structure 

cannot be considered a thin-walled structure. 
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Figure 10: FEM results between outside and inside surfaces of both 

structure’s flanges. 

 

The structure used in the third and fourth comparisons had 
𝑡

𝑟𝑎𝑣𝑔
≈ 0.024  

and 
𝑡

𝑟𝑎𝑣𝑔
≈ 0.04, respectively, which satisfy the thin-walled structure 

definition. No experimental data were available, however, as in the first 

comparison, the Deplanation function  φ4̅̅̅̅ = x4y3, i.e. a combination of 

quartic-x and cubic-y function provides the best match with FEM results. 

 

 

Conclusion 
 

Based on the comparative study done in this paper, the developed Stress-form 

analytical method for calculation of stresses discovered two significant 

findings. Primarily, the quartic variant deplanation functions were shown to 

produce improved matching to experimental results as compared to the 

classical quadratic one. Secondarily, only structures that conform to the 

definition of a thin-walled structure yield good results. Noteworthy to point out 

that the characteristic of the functions with quartic-x or x4 of having almost flat 

variation in the center part enhances matching with the experimental data. 

Moreover, the characteristic of the function with cubic-y or y3 having steeper 

slopes enhances matching with the FEM results at the edge. 
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Nomenclatures 
 

E, G     = modulus of elasticity and rigidity of thin walled panel, 

respectively 

μ     = poisson ratio 

x, y, z     = dimensional coordinates with respect to width, height and length 

of the thin panel beam 

s     = curvilinear coordinates with respect to the contour of the thin 

panel 

wy      = distributed load in y-direction  

Vy     = transversal shear force in the y-direction 

Mx     = flexural bending about axis x 

Mz     = torsional twisting about axis z 

Nz, Ns, Nzs    = stress resultants in thin panel, force per unit length 

r     = r-th panel 

hr    = thickness of the panel of the corresponding r-th panel 

t    = thickness of the uniform thickness box beam 

ravg    = average radius 

lr     = length along the contour of the r-th panel 

ρ      = moment-arm of the shear flow q about axis z 

ω     = double of area of the analyzed contour 

φ4̅̅̅̅        = deplanation function 

 

 
Appendix 
 

Self-equilibrium coefficient is the same as the coefficient of orthogonalization. 

Here, orthogonal means: Any two nontrivial functions u(x) and v(x) are said to 

be orthogonal if  

<u,v> = ∫ 𝑢 ∙ 𝑣 𝑑𝑥= 0 

The special characteristic of this concept is described in [4] whereby using the 

orthogonalization process the function φ3̅̅̅̅ (s) in Figure A1.1 can be balanced 

or self-equilibrium to be φ3(s) as in Figure A1.2 where essentially the area 

above and below the horizontal axis is the same and if integration of φ3(s) is 

taken, the result will be zero. 
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Figure A1: Deplanation function, φ3̅̅̅̅ (s) [4]      

                                 

 
Figure A2: Balanced or self-equilibrium, φ3(s) [4] 

     


