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ABSTRACT 

 

This paper proposes a novel extrapolation method known as the Lagrange 

polynomial interpolation with weighting factors (LPI-WF) to determine initial 

guess values in each time step for solving equation systems of transient 

problems using iterative methods. The LPI-WF method is developed from the 

Lagrange polynomial interpolation to determine the direct extrapolation 

values and multiply them with the weighting factors. The weighting factors are 

calculated by considering the number of the previous time steps involved in 

the extrapolation and the duration between the present time step and the 
previous time steps. Thus, the LPI-WF method is proper for use with high-

order temporal schemes. The key advantages of the LPI-WF method are that 

the computational time required to achieve the steady-state condition of the 

transient problems is reduced and the computation codes with the LPI-WF 

method is more stable than without the LPI-WF method at high time step 

values. A performance test of the LPI-WF method is carried out by comparing 

the computational time based on the “lid-driven cavity flow” problem for 

Reynolds numbers of 1000 and 5000. The test result shows that the 

computational time of the problem when the LPI-WF method is adopted can 

be reduced up to 10.46 % compared to the conventional method. 

 
Keywords: extrapolation, initial guess value, iterative method, Lagrange 

polynomial interpolation, weighting factors. 
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Nomenclature 
b Width of the cavity, m. 

EWF Extrapolation weighting factor. 

EWFN Individual extrapolation weighting factor. 

LIP Lagrange interpolating polynomial. 
LPI Lagrange polynomial interpolation. 

LPI-WF Lagrange polynomial interpolation with weighting factors. 

LTP Temporal coefficient of the LPI method. 

p Pressure, Pa. 

Re Reynolds number. 

SIMPLE Semi-implicit method for pressure linked equations. 

SUMEWFN Summation of the individual extrapolation weighting 

factors. 

SUMWD Summation of the temporal individual weighting 

differences, s. 

t Time, s. 

TT Temporal difference value, s. 
U Velocity of the cavity lid, m/s. 

u Velocity component in the x direction, m/s. 

v Velocity component in the y direction, m/s. 

WD Temporal weighting difference, s. 

WDN Temporal individual weighting difference, s. 

x Cartesian coordinate in the horizontal direction of the 

cavity, m. 

y Cartesian coordinate in the vertical direction of the cavity, 

m. 

DEV Direct extrapolation value. 

EV Extrapolation value. 

  

Greek symbol 

 Viscosity of fluid, kg/(sm). 

 Density of fluid, kg/m3. 

 Solution in the previous time step. 

 Streamline. 

 Vorticity. 

  

Superscript 

** Dimensionless. 

  
Subscript 

ntmax Maximum number of time steps. 

max Maximum. 

min Minimum. 
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Introduction 
 

The iterative method is a popular method used to solve equation systems 

obtained from discrete methods, such as the finite difference method [1]-[3], 
the finite volume method [4, 5], the finite element method [6]-[9], the lattice 

Boltzmann method [1, 10], and the spectral element method [11, 12], due to 

the ease of code development and low computational time and memory. For 

solving transient problems, the use of an explicit iterative method has a 

limitation of time step values. Thus, properly imposing initial guess values in 

each time step is important to reduce computational time. 

Extrapolation is a popular technique used to reduce the computational 

time of transient problems. It helps to determine the initial guess values of 

variables in the equations using the solutions of the previous time steps. In 

recent decades, several extrapolation methods have been proposed. The 

deformation gradient extrapolation method was proposed by Rashid [8]. This 

method was used to provide initial predictors for the next time step in the 
solutions of the large deformation finite element analysis. Three numerical 

examples showed that the use of the method to calculate the initial predictors 

could reduce the numbers of iterations required to achieve convergence. Also, 

the reliability and robustness of the equilibrium search of the solutions were 

improved. Markovinovic and Jansen [2] used the reduced-order models to 

determine initial guessed values for accelerating the solution convergence. 

They achieved 67 % maximum reduction in the computational time. Leemput 

et al. [10] employed the polynomial backward extrapolation to prescribe the 

initial guessed values for one-dimensional advection solved by using the lattice 

Boltzmann method. Liu et al. [13] proposed a methodology to improve the 

computational time of unsteady flow simulation called the dynamic mode 
extrapolation initial condition method. The method was applied by expressing 

the function in terms of time and space. The robustness of the method in 

reducing the computational time was confirmed by comparison test with the 

Lagrange extrapolation initial condition and the natural initial condition. The 

comparison results indicated that the method achieved a high computational 

time reduction for all cases. Moreover, extrapolation techniques proposed in 

[3]-[5], [7, 11, 12] were adopted for the purpose of reduction of computational 

time of many scientific, engineering, and economic problems. Some 

investigative studies [2, 3, 7, 8, 11] obtained positive results, whereas some 

[10, 12] could not verify any advantages of the extrapolation methods. 

This article aims to present a new extrapolation method called LPI-WF, 

which helps to determine the initial guess values of each time step of the 
iterative methods for solving equation systems of transient problems 

approaching the steady-state condition. Furthermore, a performance test of the 

LPI-WF method is carried out with the well-known problem, “lid-driven cavity 

flow,” for Re of 1000 and 5000. 
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Details of the LPI-WF Method 
 

The LPI-WF method is developed for solving equation systems of transient 

problems using iterative methods. The LPI-WF method accelerates solution 
convergence by applying initial guess values in each time step calculated from 

the solutions of the previous time steps. The LPI-WF method uses the LPI to 

extrapolate values directly from solutions of the previous time steps. The 

EWFs are calculated from time step values and numbers of time steps. The 

EV of the LPI-WF method is the summation of the products of the EWF and 

the DEV. Thus, EV can be expressed as follows: 
 

𝜙𝐸𝑉 = ∑ (𝐸𝑊𝐹𝑛𝜙𝐷𝐸𝑉𝑛),                                          (1)

𝑛𝑡𝑚𝑎𝑥−1

𝑛=1

 

 

where ntmax is the maximum number of time steps required to solve the 

problems. A schematic diagram of the LPI-WF method is shown in Figure 1 

when ntmax = 4. The EWF for each time step n can be obtained from 

 

𝐸𝑊𝐹𝑛 =
𝐸𝑊𝐹𝑁𝑛

𝑆𝑈𝑀𝐸𝑊𝐹𝑁
.                                                            (2) 

 

The EWFN for each time step n and the SUMEWFN are defined as follows: 

 

𝑆𝑈𝑀𝐸𝑊𝐹𝑁 = ∑ (𝐸𝑊𝐹𝑁𝑛),                                                 (3)

𝑛𝑡𝑚𝑎𝑥−1

𝑛=1

 

 

𝐸𝑊𝐹𝑁𝑛 =
𝑊𝐷𝑁𝑛

𝑆𝑈𝑀𝑊𝐷
.                                                                 (4) 

 

The WDN for each time step n and the SUMWD are defined as follows: 

 

𝑆𝑈𝑀𝑊𝐷 = ∑ ( ∑ (𝑊𝐷𝑛−𝑛𝑡𝑑+1)

𝑛

𝑛𝑡𝑑=1

) ,                         (5)

𝑛𝑡𝑚𝑎𝑥−1

𝑛=1

 

 

𝑊𝐷𝑁𝑛 = ∑ (𝑆𝑈𝑀𝑊𝐷 − 𝑊𝐷𝑛−𝑛𝑡𝑑+1).                         (6)

𝑛

𝑛𝑡𝑑=1
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Figure 1: Schematic diagram of the LPI-WF method when ntmax = 4. 

 

The WD is expressed as follows: 

 

𝑊𝐷𝑛−𝑛𝑡𝑑+1 = 𝑡𝑛𝑡𝑚𝑎𝑥 − 𝑡𝑛𝑡𝑚𝑎𝑥−(𝑛−𝑛𝑡𝑑+1),                                 (7) 

 

for 𝑛 = 1, 2, . . . , 𝑛𝑡𝑚𝑎𝑥 − 1 and 𝑛𝑡𝑑 = 1, 2, . . . , 𝑛                                                  
 

where t is the program time of each time step in transient problems. The DEV 
can be obtained using the LPI method. Thus, 

 

𝜙𝐷𝐸𝑉𝑛 = ∑ 𝐿𝑇𝑃𝑛,𝑛𝑡𝑑

𝑛

𝑛𝑡𝑑=1

𝜙(𝑛𝑡𝑚𝑎𝑥−1)−𝑛+𝑛𝑡𝑑 .                      (8) 

 

The LTP is given as: 

 

𝐿𝑇𝑃1,1 = 1,  for  𝑛 =  1,                                                         
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𝐿𝑇𝑃𝑛,𝑛𝑡𝑑 = ∏
(−𝑇𝑇𝑛,𝑛𝑡𝑡)

(𝑇𝑇𝑛,𝑛𝑡𝑑 − 𝑇𝑇𝑛,𝑛𝑡𝑡)

𝑛

𝑛𝑡𝑡=1
𝑛𝑡𝑡≠𝑛𝑡𝑑

,   for 𝑛 = 2, 3, . . . , 𝑛𝑡𝑚𝑎𝑥 − 1.    (9) 

 

The TTs are computed from: 

 

𝑇𝑇𝑛,𝑛𝑡𝑡 = 𝑡(𝑛𝑡𝑚𝑎𝑥−1)−𝑛+𝑛𝑡𝑡 − 𝑡𝑛𝑡𝑚𝑎𝑥 ,                                (10) 

 

𝑇𝑇𝑛,𝑛𝑡𝑑 = 𝑡(𝑛𝑡𝑚𝑎𝑥−1)−𝑛+𝑛𝑡𝑑 − 𝑡𝑛𝑡𝑚𝑎𝑥 ,                                (11) 

 

for 𝑛 = 1, 2, … , 𝑛𝑡𝑚𝑎𝑥 − 1, 𝑛𝑡𝑑 = 1, 2, … , 𝑛,                                                          
𝑛𝑡𝑡 = 1, 2, . . . , 𝑛, 𝑎𝑛𝑑  𝑛𝑡𝑡 ≠ 𝑛𝑡𝑑.                                                                       

 

From the preceding texts, the procedures for determining the initial 

guess values from the solutions of the previous time steps using the LPI-WF 

method are as follows: 
1. Calculate the WD from (7). 

2. Determine the WDN from (6). 

3. Find the SUMWD using (5). 

4. Compute the EWFN from (4). 

5. Calculate the SUMEWFN from (3). 

6. Compute the EWF using (2). 

7. Determine the TTs from (10) and (11). 

8. Calculate the LTP of the LPI method from (9). 

9. Find the DEVs from Equation (8). 

10.  Compute the EVs from (1). The calculated values of EVs are adopted as 
the initial guess values for iterative methods. 

 

 

Code Validation 
 

To prove the efficiency of the LPI-WF method in computational time reduction 

for calculating the initial guess values in each time step of the transient 

problems using iterative methods, a new code is developed for the performance 

test of the LPI-WF method. A well-known problem called “lid-driven cavity 

flow,” for Re of 1000 and 5000 is selected for the performance test. This is 

because these numbers are the representatives of low and high laminar flows. 

Moreover, the numbers are used in the recognized solutions for code validation 

presented by Boltella and Peyret [14] and Bruneau and Saad [15]. The finite 
volume method with the LIP scheme [16] and the SIMPLE algorithm are 

employed to discretize the partial differential equations of the problem and to 

couple the continuity equation and the momentum equations, respectively. 

Code validation is carried out to ensure that the code delivers correct solutions. 
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The comparisons of solutions computed from the code with the benchmark and 

published numerical solutions of the problem reported in [14, 15] are used for 

the code validation. The code is based on a transient condition. However, the 

solutions reported in [14, 15] are the steady-state condition solutions. 

Therefore, a convergent criterion of the code for the final solutions is that the 

relative residuals of the present time step solutions and the previous time step 

solutions must be less than or equal to 10-5, and must achieve the criterion 
consecutively at least ten times. Also, the criterion ensures that the solutions 

converged to the steady-state condition. A dimensionless time step value t** 

= 0.001 (using t** = t U/b,) and non-uniform mesh sizes of 150 × 150 and 
200 × 200  are employed for computing the Re of 1000 and 5000, respectively. 

The performance test of the LPI-WF method is carried out on four categories 

as detailed in Table 1. Also, the code validation is performed on four categories 

simultaneously. The conventional method shown in Table 1 is a means 

whereby the initial guess values are equally imposed on the solutions in the 

latest previous time step. 

“Lid-driven cavity flow” is a classical problem in Computational Fluid 

Dynamics, which is employed by numerous researchers [17]-[24] to verify or 

validate their methods or codes. Details of the problem are shown in Figure 2. 

Fluid flow in a square cavity is defined by the continuity equation and the 

momentum equations. Furthermore, the gravitational acceleration is neglected.  
 

Table 1: Details of each category for the performance test of 

the LPI-WF method. 

 

Category ntmax Extrapolation method 

A 2 Conventional method 

B 4 Conventional method 

C 4 LPI method 

D 4 LPI-WF method 

 

For two-dimensional simulation, the equations can be written as: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                  (12) 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) ,                        (13) 

 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) ,                        (14) 
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where , and µ are the density, and viscosity of the incompressible fluid in the 
square cavity, respectively. 

 

 
 

Figure 2: Details of the “lid-driven cavity flow” problem. 

 

A summary of computational procedures is as follows: 

1. Input the fluid properties into the code. 

2. Specify Re and the velocity of the cavity lid. 
3. Calculate the width of the cavity. 

4. Input the initial values of the variables in the problem, 

5. Compute the velocities and pressures of the fluid from (12), (13), and (14) 

by using the finite volume method with the LIP scheme and the SIMPLE 

algorithm to generate discrete equation systems. Then, solve the discrete 

equation systems using an iterative method. 

6. Check the convergent criterion for each time step. If the solutions do not 

meet the convergent criterion, return to step 5. until the convergent 

criterion is achieved. 

7. Determine the initial guessed values of the variables in the problem for 

computing in the next time step by using the extrapolation method (i.e., 
the conventional method, the LPI method, the LPI-WF method). 

8. Repeat step 5. to 6. 

9. Check the convergent criterion for termination of the code. If the solutions 

do not reach the convergent criterion, return to step 7. until the convergent 

criterion is achieved. 

 

Figure 3 and Figure 4 display the contours of the  and  computed 
from the code based on the “lid-driven cavity flow” problem for Re of 1000 

and 5000. The patterns of the  and   shown in Figure 3 and Figure 4 are 

similar to the patterns of the  and  shown in [14, 15]. 
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(a-A) (a-B) 

  
(a-C) (a-D) 

  
(b-A) (b-B) 

 3  

(b-C) (b-D)  
 

Figure 3: Contours of the  computed from the code based on the “lid-

driven cavity flow” problem: (a-A) category A for Re = 1000, 
(a-B) category B for Re = 1000, (a-C) category C for Re = 1000, 

(a-D) category D for Re = 1000, (b-A) category A for Re = 5000, 

(b-B) category B for Re = 5000, (b-C) category C for Re = 5000 and 

(b-D) category D for Re = 5000. 
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(a-A) (a-B) 

  
(a-C) (a-D) 

  
(b-A) (b-B) 

  
(b-C) (b-D)  

 

Figure 4: Contours of the  computed from the code based on the “lid-

driven cavity flow” problem: (a-A) category A for Re = 1000, 
(a-B) category B for Re = 1000, (a-C) category C for Re = 1000, 

(a-D) category D for Re = 1000, (b-A) category A for Re = 5000, 

(b-B) category B for Re = 5000, (b-C) category C for Re = 5000 and 

(b-D) category D for Re = 5000. 
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The dimensionless horizontal and vertical velocities (i.e., u** = u/U 

and v** = v/U) on the dimensionless vertical and horizontal center lines (i.e., 
y** = y/b and x** = x/b) of the cavity, respectively, are selected for comparison 

based on the “lid-driven cavity flow” problem for Re = 1000. The comparison 

between the dimensionless velocities computed from the code of this work and 

the dimensionless velocities reported in [14, 15] is shown in Table 2 and Table 

3.  

 

Table 2: Comparison between the dimensionless horizontal velocities 

computed from the code and the dimensionless horizontal velocities 
reported in [14, 15] based on the “lid-driven cavity flow” problem for 

Re = 1000. 
 

y** 

u** 

Present work 
[14] [15] 

A B C D 

1.0000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.00000 

0.9766 -0.6617013 -0.6620655 -0.6623109 -0.6619848 -0.6644227  

0.9688 -0.5776700 -0.5781232 -0.5784306 -0.5780242 -0.5808359 -0.58031 

0.9609 -0.5133807 -0.5139125 -0.5142733 -0.5137946 -0.5169277  

0.9531 -0.4684216 -0.4690181 -0.4694226 -0.4688833 -0.4723329 -0.47239 

0.8516 -0.3332189 -0.3336413 -0.3339621 -0.3335436 -0.3372212  

0.7344 -0.1867607 -0.1867906 -0.1868397 -0.1867802 -0.1886747 -0.18861 

0.6172 -0.0563917 -0.0564056 -0.0564167 -0.0564001 -0.0570178  

0.5000 0.0619424 0.0617708 0.0616691 0.0618117 0.0620561 0.06205 

0.4531 0.1076536 0.1074753 0.1073726 0.1075166 0.1081999  

0.2813 0.2779799 0.2781329 0.2782668 0.2780928 0.2803696 0.28040 

0.1719 0.3849464 0.3854361 0.3857839 0.3853204 0.3885691  

0.1016 0.2964872 0.2972227 0.2977117 0.2970553 0.3004561 0.30029 

0.0703 0.2198370 0.2204753 0.2208919 0.2203312 0.2228955  

0.0625 0.1995407 0.2001395 0.2005284 0.2000049 0.2023300 0.20227 

0.0547 0.1787697 0.1793253 0.1796841 0.1792022 0.1812881  

0.0000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 

 

The dimensionless horizontal and vertical velocities computed from the 

code with category A yield the highest maximum differences compared to the 

solutions reported in [14, 15]. The highest maximum differences of the 
dimensionless horizontal velocity are 1.39 % and 1.35 % compared to the 

solutions reported in [14, 15] on y** = 0.0547 and y** = 0.0625, respectively. 

Thus, the highest maximum differences of the dimensionless vertical velocity 

are 1.49 % and 1.45 % compared to the solutions reported in [14, 15] on x** = 

0.9375 and x** = 0.9297, respectively. Besides, the maximum differences 

between the solutions, dimensionless horizontal velocity, computed from the 

code with category D, and the solutions reported in [14, 15] are 1.15 % and 
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1.12 % on y** = 0.0547 and y** = 0.0625, respectively. Also, the maximum 

differences between the solutions, dimensionless vertical velocity, computed 

from the code with category D, and the solutions reported in [14, 15] are 1.28 

% and 1.24 % on x** = 0.9375 and x** = 0.9297, respectively. 

 

Table 3: Comparison between the dimensionless vertical velocities 

computed from the code and the dimensionless vertical velocities 
reported in [14, 15] based on the “lid-driven cavity flow” problem for 

Re = 1000. 
 

x** 

v** 

Present work 
[14] [15] 

A B C D 

0.0000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 

0.0312 -0.2251103 -0.2254315 -0.2256545 -0.2253564 -0.2279225  

0.0391 -0.2903928 -0.2907894 -0.2910641 -0.2906971 -0.2936869 -0.29330 

0.0469 -0.3517003 -0.3521544 -0.3524685 -0.3520490 -0.3553213  

0.0547 -0.4065557 -0.4070475 -0.4073865 -0.4069337 -0.4103754 -0.41018 

0.0937 -0.5229326 -0.5233599 -0.5236483 -0.5232631 -0.5264392  

0.1406 -0.4236065 -0.4239931 -0.4242531 -0.4239061 -0.4264545 -0.42634 

0.1953 -0.3168067 -0.3172187 -0.3175008 -0.3171248 -0.3202137  

0.5000 0.0261299 0.0259989 0.0258801 0.0260336 0.0257995 0.02580 

0.7656 0.3228789 0.3230505 0.3232078 0.3230060 0.3253592  

0.7734 0.3314039 0.3316044 0.3317819 0.3315510 0.3339924 0.33398 

0.8437 0.3726714 0.3732945 0.3737411 0.3731495 0.3769189  

0.9062 0.3283593 0.3292032 0.3297821 0.3290087 0.3330442 0.33290 

0.9219 0.3053948 0.3062299 0.3067999 0.3060400 0.3099097  

0.9297 0.2919080 0.2927229 0.2932790 0.2925360 0.2962703 0.29622 

0.9375 0.2765008 0.2772919 0.2778314 0.2771112 0.2807056  

1.0000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000 

 

Table 4 shows the comparison between the maximum , , and location 

on the primary vortex, and the minimum , , and location on the lower-left 
secondary vortex computed from the code of this work and the results reported 

in [15] based on the “lid-driven cavity flow” problem for Re = 5000. The 

maximum  computed from the code with category A delivers the maximum 

difference of 2.45 % compared to the maximum  reported in [15]. Besides, 

the minimum  computed from the code with category C grants the maximum 

difference of 0.05 % compared to the minimum  reported in [15]. Moreover, 

the differences of the maximum and minimum  computed from the code with 
category D compared to the solutions reported in [15] are 2.42 % and 0.04 %, 

respectively. 
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Table 4: Comparison between the maximum , , and location on the 

primary vortex, and the minimum , , and location on the lower-left 
secondary vortex computed from the code and the results reported in 

[15] based on the “lid-driven cavity flow” problem for Re = 5000. 
 

Vortex Value 
Present work 

[15] 
A B C D 

Primary 

vortex 

max 0.11898 0.11901 0.11901 0.11901 0.12197 

 1.81501 1.81664 1.81683 1.81669 1.9327 

x** 0.48818 0.48818 0.48818 0.48818 0.48535 

y** 0.53493 0.53493 0.53493 0.53493 0.53516 

Lower 

left 

secondary 

vortex 

min -0.0030704 -0.0030718 -0.0030721 -0.0030718 -0.0030706 

 -2.71265 -2.71275 -2.71269 -2.71273 -2.7244 

x** 0.19452 0.19452 0.19452 0.19452 0.19434 

y** 0.07477 0.07477 0.07477 0.07477 0.073242 

 

 

Performance Test of the LPI-WF Method 
 

The performance test of the proposed LPI-WF method is carried out by 

comparing the computational time for solving the “lid-driven cavity flow” 

problem in the four categories. The “lid-driven cavity flow” problem is 

simulated for Re of 1000 and 5000. The non-uniform mesh sizes used are 100 

× 100 and 150 × 150 for Re of 1000, and 150 × 150 and 200 × 200 for Re of 

5000. The computer CPU time is used as the computational time. The 

computational time reported in the following contents is rounded off to integer 
values. The processor of the computer employed for computing is Intel ® Core 

™ i5-4460 CPU @ 3.20 GHz. 

Figure 5, Figure 6 and Table 5 show the computational time comparison 

of the “lid-driven cavity flow” problem for Re of 1000 and 5000 in the different 

categories and on the dimensionless time step values from 0.001 to 0.004. All 

results show that the computational time of category D is less than the 

computational time of categories A and B. The maximum computational time 

reductions of category D are 10.46 % and 11.36 % of the computational time 

of category A for Re of 1000 at 100 × 100 mesh size and 0.004 dimensionless 

time step value, and category B for Re of 5000 at 150 × 150 mesh size and 

0.004 dimensionless time step value, respectively. Also, the computational 
time of category D is less than the computational time of category C for Re of 

1000 at 100 × 100 and 150 × 150 mesh sizes and 0.002, 0.003, and 0.004 

dimensionless time step values, and for Re of 5000 at 200 × 200 mesh size and 

0.003 and 0.004 dimensionless time step values. Thus, at high resolutions and 

large time step values, category D has higher performance than category C for 

reducing computational time. The maximum computational time reduction of 

category D is 3.3 % of the computational time of category C for Re of 5000 at 
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200 × 200 mesh size and 0.004 dimensionless time step value. As shown in 

Figure 6 (b), the result of category A at 0.004 dimensionless time step value, 

is divergent (i.e., the solution fails to converge). Thus, the computation of 

category D is more stable than the computation of category A.  

 

 

 

(a) 

 

 
(b)  

 

Figure 5: Comparisons of computational time based on the “lid-driven 

cavity flow” problem for Re = 1000 in the different categories: 

(a) 100 × 100 mesh size and (b) 150 × 150 mesh size. 
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(a) 

 

 
(b)  

 

Figure 6: Comparisons of computational time based on the “lid-driven 

cavity flow” problem for Re = 5000 in the different categories: 

(a) 150 × 150 mesh size and (b) 200 × 200 mesh size. 
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Table 5: Number of iterations and computational time for the first ten 

time steps based on the “lid-driven cavity flow” problem for Re = 5000, 

200×200 mesh size, and 0.003 dimensionless time step value. 

 

Time 

step 
Category 

Number of 

iterations 

per time 

step 

Improvement in 

the number of 

iterations (%) 

compared to 

category A 

Computational 

time (s) per time 

step 

Reduction of 

computational 

time (%) 

compared to 

category A 

1 

A 10 - 1778 - 

B 10 NA 1777 0.06 

C 10 NA 1780 NA 

D 10 NA 1778 NA 

2 

A 9 - 1032 - 

B 7 22.22 918 11.05 

C 7 22.22 901 12.69 

D 7 22.22 901 12.69 

3 

A 8 - 916 - 

B 7 12.50 753 17.79 

C 6 25.00 745 18.67 

D 6 25.00 745 18.67 

4 

A 9 - 795 - 

B 7 22.22 643 19.12 

C 6 33.33 635 20.13 

D 6 33.33 635 20.13 

5 

A 9 - 693 - 

B 7 22.22 544 21.50 

C 7 22.22 536 22.66 

D 7 22.22 535 22.80 

6 

A 9 - 626 - 

B 7 22.22 492 21.41 

C 7 22.22 484 22.68 

D 7 22.22 483 22.84 

7 

A 9 - 568 - 

B 8 11.11 448 21.13 

C 7 22.22 452 20.42 

D 7 22.22 441 22.36 

8 

A 8 - 520 - 

B 7 12.50 412 20.77 

C 7 12.50 442 15.00 

D 7 12.50 434 16.54 

9 

A 9 - 477 - 

B 7 22.22 380 20.34 

C 7 22.22 380 20.34 

D 7 22.22 380 20.34 

10 

A 8 - 439 - 

B 7 12.50 357 18.68 

C 7 12.50 357 18.68 

D 7 12.50 356 18.91 

NA = Not available 
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Conclusions 
 

The details of the LPI-WF method developed for determining the initial guess 

values of iterative methods to solve transient problems are demonstrated. The 
efficiency of the LPI-WF method are proven by the performance test carried 

out with the “lid-driven cavity flow” problem for Re of 1000 and 5000 at the 

different mesh sizes and various dimensionless time step values. The 

conclusion of this work is outlined in the following items: 

1. The LPI-WF method is suitable for use with high-order temporal schemes 

such as the LIP scheme for extrapolation of initial guess values from 

solutions of previous time steps. 

2 The procedures of the LPI-WF method are not complicated and are easy to 

add to the code of problem solvers for convergence acceleration to the 

steady-state condition of solutions. 

3. From the results of the performance test, the computational time of the code 

with the LPI-WF method can be reduced up to 10.46 % of the 
computational time of the code with the conventional method for obtaining 

the steady-state condition of the solutions. Also, the computation of the 

code with the LPI-WF method at high dimensionless time step values is 

more stable than that of the conventional method. 

4. Moreover, the performance of the LPI-WF method for reducing the 

computational time of the code is better than the performance of the LPI 

method at the high resolution of the mesh sizes and the large amounts of 

the dimensionless time step values. 

Also, the LPI-WF method is implemented preliminarily as a performance test 

to verify the robust potential of the method for reducing the computational time 

of the flow solvers. For future work, to verify clearly that the LPI-WF method 
accelerates the convergence of solutions, the performance test of the method 

will be carried out extensively on both the “lid-driven cavity flow” problem at 

the various Reynolds numbers and other well-known problems. 
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