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Abstract—Object detection that deals with identifying and 

locating object is one of area that integrate from the advance- ment 

in machine learning and computer vision. Modern object detection 

which carried out supervised learning utilizes Convo- lutional 

Neural Network (CNN) as the backbone of the detection 

architecture which is significant for underwater object detection 

as the underwater images are usually low in quality and blurry. 

Single stage detection such as You Only Look Once (YOLO) is one 

the famous object detection model that is prominent among 

researchers due to high performance in accuracy and processing 

speed. However, YOLO has many versions where the current 

incremental improvement model of YOLOv3 has been widely used 

by researchers to solve different types of problem related to 

object detection. Therefore, there is a need to explore the trade-off 

relationship between the processing speed and precision of each 

YOLO model. In the study, two different open source underwater 

datasets were used in four different YOLOv3 models namely as 

YOLOv3-SPP, YOLOv3-Tiny, YOLOv3-Tiny-PRN and the 

original YOLOv3 in order to study their performance based on 

metrics evaluation of precision and processing speed (FPS). The 

result shows that YOLOv3-SPP proved to be the best in terms of 

precision while YOLOv3-Tiny-PRN lead in terms of execution 

speed. So, this study shows that YOLOv3 model is highly 

significant to be implemented and able to accurately detect 

underwater objects with haze and low-light environment. This 

study can help researchers and industry in determining the best 

YOLOv3 model specifically for detection of the underwater 

images and its application. 

 
Index Terms—Underwater Detection, CNN, YOLOv3, 

YOLOv3-SPP, YOLOv3-Tiny, YOLOv3-Tiny-PRN 

 

I. INTRODUCTION 

N the recent few years, deep learning which is one of the sub-

sets in Artificial Intelligence (AI) has driven the 

worldchanging breakthrough in today’s technology 

advancement.  
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The acceleration is due to the researchers believe that 

computer model seems to fit and act more closely with a human 

brain which apply the concept like neuroscience. Hence, the 

capability of mimicking neurons connection as in human brain 

has made deep learning competent enough to carry out data-

related task such as classifying object, recognizing something 

and information matching. Moreover, in classifying and 

recognizing, an object detection is one of the areas in computer 

vision that able to take great leaps from the advancement of 

deep learning. Object detection involve a process to train 

computer to understand visual data representation and 

hierarchical features from labelled input images such as 

colours, shapes, distance, border and many more [1], [2]. 

In order to produce an efficient object detection model with 

high precision and low processing time, there were many 

different networks have been experimented in the algorithm 

development process. That is included traditional approach 

such as Histogram of Oriented Gradient (HOG) and Support 

Vector Machine (SVM) while modern machine learning 

utilized Convolutional Neural Network (CNN) as based 

networks. By the way, it has been proved by [2] that object 

detection which utilize deep learning has gained much 

popularity compared to traditional method due to its flexibility 

and supremacy in the accuracy. Besides, the need of domain 

expertise and human intervention in traditional machine 

learning has made many researchers believed in deep learning 

as there were many comparative studies had proven that the 

performance of deep learning based on CNN surpassed the 

traditional methods [1], [2], [3], [4]. 

The main factor for object detection using deep learning with 

CNN is highly significant was due to the inclusion of 

classification and object localization. In other way, CNN gives 

benefit for the image classification approach since it has the 

ability to learn by assigning weights and biases to various 

objects in the image. Hence, it able to differentiate from one 

with the other. Generally, there are two types of modern object 

detection approaches which are multistage detection and single-

stage detection. The pioneer of modern object detection that 

used multi-stage detection algorithm is Region based 

Convolutional Neural Network (R-CNN) [5] followed by 

improvement algorithm which is Fast R-CNN [6] and later is 

Faster R-CNN [7]. R-CNN operates by selective search method 

to generate region proposals for object detection. Meanwhile, 

current approaches such as Fast R-CNN and Faster R-CNN able 

to achieve good accuracy but have limited ability to achieve 
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sufficient speed for real time implementation [8]. Currently, 

YOLO (You Only Look Once) [9] is one of the famous 

architectures for single-stage detection. This architecture is 

famous due to its efficacy, fast and accurate [8], [10]. YOLO 

architecture has three version which is YOLOv1[11], YOLOv2 

[12] and the latest is YOLOv3 [9]. 

Single stage detector that focuses on YOLO architecture has 

been widely used in many applications for object detection 

compare to R-CNN architecture. This is due to YOLO’s 

capability to achieve good precision along with short 

processing time that make YOLO able to be executed for 

realtime application. Incremental improvement in YOLOv3 has 

seen other architecture that still based on YOLOv3 such as 

Tiny-YOLOv3, Tiny-Prn-YOLOv3 and YOLOv3-SPP were 

developed in order to achieve different objective [13], [14], 

[15]. With their uniqueness of architecture that make it different 

from original architecture, all these YOLO-type detection 

model have their on benefits and function in terms of processing 

speed and the precision in detecting an object. Therefore, many 

researchers have implemented these models to solve the 

problem related to classification and localization [16], [17]. The 

application of different YOLOv3 architectures may have 

significant impact in terms of the accuracy and processing 

speed. Therefore, it is crucial to study the relationship between 

processing speed and precision of each model. Herein, a 

comparative study was carried out to analyse the performance 

of four different architectures of YOLOv3 that focused on the 

performance comparison of different models. This study also 

explores the effect of CNN architecture towards detection speed 

(frame per second) and mean average precision (mAP). Two 

open-source underwater datasets were used in this study. Both 

datasets were trained and validated separately which later the 

model was tested using different set in order to validate the 

performance in terms of the precision (mAP) and the processing 

speed (FPS). 

II. LITERATURE REVIEW 

Object detection is one of the main element in computer 

vision where it functions to specifically recognize objects and 

also locate them in an image. Single-stage detection like YOLO 

treats object detection as regression task by taking input images 

to set fix number of predictions on grid and learn the class 

probabilities along with bounding box coordinates. This section 

is divided into two sections where the first section will reviewed 

related studies that implemented YOLOv3 as object detection 

and the other will be the explanation on the YOLOv3 

architecture. 

 

A. Related Research and Implementation 

Self-driving car is one of the areas that have vast demand on 

the efficiency of computer vision application. Nugraha et al 

[16] have conducted a study in contributing to the application 

of computer vision and deep learning for self-driving car that 

utilized CNN and road lane detector. The study implemented 

YOLOv1 as object detector while polynomial regression as 

road lane guidance. The proposed method had successfully 

achieved good performance and fast processing time which 

revealed that there are three main application of adjusting road 

lane, detect an object and provide steering suggestion. Apart of 

the lane decision, traffic sign recognition is also an important 

part as reported by Yusuf et al [15] whose implemented CNN 

based TINY-YOLO algorithm to detect and classify road sign 

in only two steps which identify possible sign locations in 

image and hence classify the signs. 

A research by Aleksa et al [17] has implemented YOLO 

algorithm for real-time detection for traffic participant that 

include pedestrian for autonomous car application. The Berkley 

Deep Drive dataset was used to train and validate the YOLOv3 

model. The model with challenging dataset have variety of 

driving conditions such as bright and overcast sky, night, snow 

and fog had successfully achieved 46.60% of mAP and 25 fps 

processing time for HD images. Another research that applied 

a challenging dataset such as severe weather conditions for 

pedestrian detection was conducted by Tumas et al [13]. The 

thermal type dataset namely ZUT (Zachodniopomorski 

Uniwersytet Technologiczny) has successfully trained 

YOLOv3 model with mAP up to 89.1% and Tiny-YOLOv3 

with 66.3%. INRIA is one of the famous pedestrian datasets that 

had been used by Oltean et al [18] for video surveillance 

system. YOLOv3 and YOLOv3-Tiny was trained with the 

dataset and achieved processing speed up to 21 fps and 77 fps 

respectively. 

Unmanned Aerial Vehicle (UAV) is another area that 

implemented YOLO algorithm as an object detection tool. Luo 

et al[19] proposed a vehicle detection in UAV images using 

YOLOv3 algorithm which integrated with K-means++ and 

Soft-NMS (Non-Max Suppression) and achieved a good result 

of 97.49% average precision. Meanwhile, Zhang et al [14] 

proposed YOLO-Lite model with Spatial Pyramid Pooling 

(SPP) in vision-based detection of power line poles after 

typhoon striking. The execution through CPU achieved 

precision of 75.80% with 9 fps. 

YOLO also have been implemented by many researchers for 

application of underwater detection which have more 

challenging environment especially in murky water and low 

light surroundings. Paper proposed by Xu et al. [20] utilized 

YOLOv3 for underwater fish detection for waterpower 

applications. The datasets used to train and test the model were 

very challenging with high turbidity, high velocity and murky 

water as the three datasets were recorded at marine and 

hydrokinetic energy projects and river hydropower projects. 

The training and testing of the model shows adequate results for 

mean average precision (mAP) of 53.92%. Mohamed et al. [21] 

utilized YOLOv3 for application of fish detection and tracking 

in fish farms. Pre-processing for the underwater images was 

executed using Multi-Scale Retinex (MSR) algorithm while 

optical flow algorithm was used to track fish. The result shows 

that the model able to track the fish trajectory with the help of 

YOLO compare to without YOLO. 

Literally, most of the application in YOLO models show 

significant performance in terms of the detection accuracy, 

mAP and Frame Per Second (FPS). As the evolvement of 

YOLOv1 until YOLOv3, many improvement have been 

proposed for variety of object detection. The latest YOLOv3 

has been widely used in many application including underwater 

detection as the approach is significant for low quality images 

[20], [21]. 
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B. YOLOv3 

1) Original YOLOv3: YOLO is a deep neural network 

algorithm that utilize fully convolutional neural  network [9]. 

Fig.1 roughly shows the process executed in YOLOv3. The 

algorithm applies a single stage network where it divides an 

image into grid which later each grid will predicts the bounding 

boxes, confidences of the boxes and the probabilities for each 

class. A research proposed by Redmon et al [9] stated that in 

YOLOv3, a feature extractor called Darknet-53 that is a deeper 

architecture compare to previous version. Darknet-53, as shown 

in Fig. 2 contains 53 convolutional layers with  stride 2 (down 

sample the feature maps) and followed by batch normalization 

layer and Leaky ReLU as activation. As mentioned by [9], 

YOLOv3 assemble fully convolution layer, so there is no 

pooling layer is used in the network. After going through 

feature extractor, the feature will be passed to a classifier 

section in which the prediction of the detection will be made. 

The prediction is made by utilizing a 1×1 convolution layer 

where the size of the prediction map is the same as the size of 

feature map before. In YOLOv3, each cell can predict 3 

bounding boxes in each cell. 

 
Fig. 1: Detection Process of YOLOv3 [10] 

 

One of the improvements in YOLOv3 compared to previous 

version is the ability to make prediction across three different 

scales where on the detection layer, feature maps of different 

sizes is used to make detection[9]. The input will be down 

samples by network until first detection layer in which the 

detection occurred based on the feature maps of a layer with 

stride 32 (considering input size 416×416). Then, the layer will 

be unsampled with a factor of 2 and concatenated with feature 

maps of a previous layer that have same feature map sizes. 

Another scales detection is done at 16 stride layer. Having the 

same upsampling procedure and final scale detection is made at 

stride 8 layer. This improvement help the YOLOv3 model to 

have the ability to detect small objects [4]. At the output, there 

is a process to filter the detection since the output detection 

consist of multiscale detection and many bounding box 

predictions per cell. There are two process which is the 

elimination based on objectness score and Non-maximum 

Suppression (NMS) [22]. The objectness score basically the 

process to filter the boxes that have scores below the threshold. 

After applying filtering process based on objectness score, there 

is still high chance of overlapping boxes. Here comes the 

second filter which is NMS. When several boxes overlap in 

detecting the same object, NMS will pick only one box as the 

best detection [22]. The NMS process started with selecting the 

box that have the highest score, then  

 
Fig. 2: YOLOv3 Architecture  

 

all the boxes that overlap will be removed if the computation is 

more than Intersection Over Union (IoU) threshold. The step of 

NMS will be repeating until no more box left that have lower 

score than the selected box and finally the YOLO will produce 

its final output. 

 

2) Tiny-YOLOv3: Tiny-YOLOv3 is the simplified and light 

version of the original YOLOv3. It operates based on the same 

principle as original model but with a varied number of 

parameters in which the depth of convolutional layer is reduced. 

Tiny-YOLOv3 structure has only seven convolutional layers 

and small number of 1×1 and 3×3 convolutional layer is used 

as feature extractor. To reduce the dimensionality size through 

the network, pooling layer is applied. This network 

simplification requires this model to occupy less amount of 

memory and hence, will improve the detection speed [23]. 

 



JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL. 18 APR 2021 
 

33 

 

3) YOLOv3-SPP: Spatial pyramid pooling (SPP) is an added 

layer to the original YOLOv3 model [24]. This layer is placed 

right after convolutional layer and before the fully connected 

layer. In YOLO model, the convolutional layer has the 

capability to process any image without having problem with 

the image size, but the fully connected layers have the limitation 

on the image size where it need to be flattened as it only accepts 

input as 1d vector. This is the reason why the images need to be 

warped in order for the size to fit the size requirement of the 

network. SPP layer act to map any input size down to a fixed 

size output [24]. The feature maps from the last convolutional 

layer will be divided into a number of different bin scales (Bin 

scales depends on the image size) and will execute max pooling 

on each bin which later will be fed to the fully connected layer. 

The different pooling process with different bin scale are done 

in parallel.  

 

4) Tiny-YOLOv3-PRN: Normal feature extraction process in 

deep CNN is passed from one layer to next layer. Partial 

Residual Network that proposed by [25] applies changes to the 

normal operation where a single layer can feed the feature into 

next layer and also directly jump into the 2, 3 or more layers 

away. Technically, the feature inputs at a lower layer will be 

available to a node in a higher level [25]. YOLOv3 tiny was 

modified to add partial residual network (PRN) where it 

consists of 5 shortcuts from original architecture. The shortcuts 

layer will add the feature maps from previous layer with the 

feature map from jump layer. The shortcut layer will be 

activated using leaky-ReLU type of activation. 

 

C. YOLO Performance Comparison 

Generally, most application of YOLO models have been 

explored on common detection studies instead of underwater 

object detection. To date, there is none study has been 

conducted to compare the performance of YOLOv3 models 

specifically for underwater object detection. The milestone of 

YOLOv3 in object detection leads to other several 

improvements and changes in the architecture such as 

YOLOv3-SPP, Tiny-YOLOv3 and Tiny-YOLOv3-PRN. All 

these architecture act and perform differently as it was design 

to fulfill the objectives and hardware used. The major 

difference we can see is the network’s depth. YOLOv3 and 

YOLOv3-SPP are networks with deeper architecture compare 

to Tiny-YOLOv3 and Tiny-YOLOv3-PRN. Deeper layer tends 

to aim for high precision that operates superior in terms of 

feature extraction while shallow network aims for better 

performance speed with minimal cost of hardware. 

Several papers had presented the comparison result of deeper 

network versus shallow network [13], [18], [26], [27]. The 

results indicated that deeper network surpass shallow network 

in a huge gap of mean average precision (mAP) while in terms 

of processing speed, lighter network were able to reach high 

frame per second (FPS). Tumas et al. [13] stated that the layers 

of the network affected the feature extraction where Tiny model 

cannot extract more features which lead to lower precision even 

after same training iteration. Additionally, by modifying and 

utilizing the network with SPP layer, the models can have better 

precision due to SPP benefits in allowing for learning 

multiscale object features more detail [24], [26]. On the other 

side, modifying the architecture with PRN helps lightweight 

model to have less parameter and less computation which yield 

to better performances in terms of frame rate [25]. Literally, it 

shows that the changes or improvement of YOLOv3 helped to 

develop more accurate detection model and hence this study is 

used to compare several YOLOv3 model and hence proposed 

the best YOLOv3 model for underwater object detection 

specifically for haze and low-light environment. 

 

III. METHODOLOGY 

This section explains the developments of underwater dataset 

preparation to YOLOv3 architecture based on Deep 

Convolutional Neural Network (DCNN) detection model. This 

section also includes the evaluation of all comparison works on 

YOLOv3 and its respective models’ performance. Generally, 

the overall proposed work in this study is presented as shown 

in Fig.3. 

 
Fig. 3: Different YOLOv3 Architecture Execution 

 

A. Underwater Dataset Acquisition 

Training an object detection model in computer vision 

requires a set of image dataset for training, validating, and 

testing. Image dataset is a collection of instances of the 

proposed object to be detected which share the same attributes. 

In this study, there are two open source underwater datasets that 

were used to train different type of YOLOv3 architecture. 

The first dataset is Google Open Images V6+ Extension 

dataset [28]. It consists of 600 categories of annotated images. 

In order to implement the detection for underwater objects, a 

total of 1420 images of four categories of underwater animals 

which is squid, skates, jellyfish and shark was downloaded and 

used to train different YOLOv3 models. Another dataset is 

taken from The Brackish Dataset [29] that contains six 

underwater categories such as big fish, jellyfish, crab, shrimp, 

small fish and starfish. This open source dataset consists of 

10,995 annotated files and 14,518 images extracted from 

recorded videos. Both datasets were separated into 80% for 

training, 10% for validation and 10% for testing. 
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Both open source dataset were already annotated by 

following the YOLO annotation bounding box format. Each 

image will have its own annotation in .txt file. For YOLO, it has 

a specific annotation format that consist of 5 components which 

is object-id, center x, center y, width and height. The objected 

represent the class number while center x and center y will 

represent the coordinates of the center points of the bounding 

boxes. The width and height is the representation of the size of 

the bounding box. 

B. Deep Learning Framework 

Neural network framework is used to provide flexible APIs 

and configuration options for performance optimization where 

it is designed to facilitate and fasten the training of deep 

learning models [30]. In this study, the neural network 

framework that was used is an open source framework called 

Darknet. Darknet is written in C and CUDA. Using this neural 

network framework also will allow the execution of the training 

and detection to be made in Graphical Processing Unit (GPU) 

which is faster compare using Central Processsing Unit (CPU). 

All models were executed on a computer with a i7 8th Gen, 

CUDA based Nvidia GPU GTX1060 Max-Q and a 16GB 

RAM. 

 

C. YOLO Model Execution 

In this research, object detection architecture that based on 

computer vision was used as a task to recognize an instance of 

underwater life as an object class and describe the locations of 

the detected animal in an image using bounding box. Various 

YOLO architecture such as YOLOv3, Yolov3-Tiny, YOLOv3-

Tiny-PRN and YOLOv3-SPP were implemented to compare 

the performance from two perspective which is the precision of 

detection and the processing time. The two open source datasets 

were used to train and validate the different architecture of 

YOLO models. The real challenges is when one of the 

downloaded dataset was originally in brackish strait that has 

degraded visibility. Then, the datasets went through data pre-

processing and augmentation. This process was done in 

configuration file of the YOLO model. Later, all the 

comparison YOLO models of YOLOv3, Yolov3-Tiny, 

YOLOv3-Tiny-PRN and YOLOv3-SPP were trained and 

validated using the open source datasets. Both datasets were 

separately used to train and validate all the YOLO models. 

After training, the detection models were tested using test 

dataset which is not included in training and validation. All the 

models’ performance were evaluated in order to assess their 

model precision and processing time. Finally, the output from 

the performance evaluation of all four different YOLO models 

were compared and analysed to highlight the effect of each 

detection models. 

 

D. Performance Evaluation 

In order to evaluate the performance for each tested YOLO 

models, the evaluation criterion were measured and calculated 

based on five common evaluation metrics that are Precision and 

Recall as shown in Eq. 1 and Eq. 2 respectively. Precision will 

indicate that out of all predicted instances that belongs to 

particular class, actually belonged to that particular class. In 

addition, precision is used to reflect the robustness of detection 

where high precision returns in truer detected object than false 

detected in the established model. Meanwhile the recall 

determines the ability of the model to find all relevant instances 

in the dataset. High precision indicates a low value of the false 

positive though generally correlated with a small number of 

false negatives for recall. 

 

Precision=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
         (1) 

 

Recall=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
           (2) 

 

F1-score= 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (3) 

 

mAP=
∑ 𝐴𝑃𝑖𝑘

𝑖+1

𝑘
                               (4) 

 

𝐹𝑟𝑎𝑚𝑒 𝑃𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑, 𝐹𝑃𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒,𝑠
    (5) 

 

Another evaluation used is F1-measure as shown in Eq. 3 

which represents the harmonic mean of precision and recall. 

Next, the networks were also evaluated with mean average 

precision (mAP) as denoted in Eq. 4. The mAP for object 

detection is defined as the average of the AP calculated for all 

classes involved. Finally, Frame Per Second (FPS) as in Eq.5 

is used to express on how fast the model can process the input 

in one second. 

IV. RESULTS AND DISCUSSION 

In this study, there are four different YOLOv3 

architecturebased models were trained and validated and hence 

finally tested using “never seen dataset” which is the testing 

dataset. Table I shows the testing result of performance 

evaluation metrics using both datasets, The Brackish Dataset 

and Google Open Images Dataset V6+. From the results, it 

shows that The Brackish Dataset trained model, highest 

precision result is YOLOv3-SPP while for recall, YOLOv3 

original model is the highest and the lowest recall model is 

YOLOv3-Tiny-PRN. 

YOLOv3-Tiny-PRN have high number of false negative that 

lead to lower performance since recall measures the models 

performance to return all the positives. As shown in Fig. 5 (a), 

the model Tiny-YOLOv3-PRN produce false negative result 

where it detects only one squid and incorrectly rejected another 

squid. On the other hand, with good performance in F1-Score 

and mAP, YOLOv3 and YOLOv3-SPP are the most significant 

model for this dataset. The results also show that both models 

were able to produce high mAP due to its architecture that has 

deeper layer and able to extract more features compare to Tiny 

version. Their robustness indicated that both deeper models 

have small number of false negative and false positive. Fig. 4 

(a) shows that YOLOv3-SPP only detected 2 out of 3 starfish 

which resulted in false negative while Fig. 5 (b) is the false 

positive when YOLOv3 incorrectly identified rays and skates 

as shark. 
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TABLE I: Performance Evaluation Result 

 

Dataset Architecture Precision Recall F1-Score mAP@50 (%) 

 YOLOv3 0.96 0.96 0.96 97.56 

The Brackish Dataset YOLOv3-SPP 0.97 0.91 0.94 97.03 

 YOLOv3-Tiny 0.80 0.78 0.79 87.18 

 YOLOv3-Tiny-PRN 0.81 0.69 0.75 79.16 

 YOLOv3 0.63 0.67 0.65 66.40 

Google Open Images 
Dataset V6+ YOLOv3-SPP 0.66 0.73 0.69 74.88 

 YOLOv3-Tiny 0.41 0.63 0.50 53.25 

 YOLOv3-Tiny-PRN 0.42 0.60 0.50 58.92 

 

TABLE II: Processing Speed Inference 
Dataset Architecture Frame Per 

Second(FPS) 

 

The Brackish Dataset 

YOLOv3 15.5 

YOLOv3-SPP 15.2 

YOLOv3-Tiny 44.6 

YOLOv3-Tiny-PRN 47.7 

 
Google Open Images 

Dataset V6+ 

YOLOv3 17.1 

YOLOv3-SPP 16.9 

YOLOv3-Tiny 99.9 

YOLOv3-Tiny-PRN 102.4 

 

 

 

  

Fig. 4: False Negative and False Positive from The Brackish 

Dataset 

 

 

 

  

Fig. 5: False Negative and False Positive from Google Open 

Images V6+ Extension 

 

Next, YOLOv3-SPP proves to be the most significant model 

for Open Image dataset since having the ability to achieve 

highest precision and recall. As noted, the high precision 

represents accuracy of the model’s prediction since it returns 

high value for true positive and lowest return for false positive. 

Otherwise, both Tiny models produce higher result in recall 

compare to precision. This indicate that both tiny models has 

the ability to find the relevant objects in the dataset but poor 

performance in determining the relevant objects is actually 

relevant. This can be seen from Fig. 4 (b) as Tiny-YOLOv3 

wrongly classified small fish as shrimp which resulted in false 

positive, hence, reduced the precision. Furthermore, the 

YOLOv3 with Spatial Pyramid Pooling (SPP) layer gave better 

detection performance compared to original YOLOv3 for Open 

Image dataset but almost the same performance (mAP) for The 

Brackish Dataset. This is due to the different size of the input 

training images for Open Images dataset compare to The 

Brackish Dataset that are uniform in size. The benefits of SPP 

is it can combine different scales features derived to the variable 

of input scales and hence, improve the execution and backbone 

of the network [26]. Moreover, the multi-size training and full 

image representations in SPP network are able to improve the 

accuracy and decrease overfitting [26], [24]. Table II shows the 

processing speed performance of every model to correctly 

classify the input images in test dataset. From the obtained 

result, the frame per second (FPS) of every model shows that 

all models are able to be implemented in real-time application. 

This is the benefits of single stage detector like YOLO where it 

needs only a single pass through the network and predicts the 

bounding box of the objects. 

 

 
 

Fig. 6: Result from The Brackish dataset trained model 
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Fig. 7: Result from Google Open Images V6+ Extension 

trained model 

 

Another thing that can be seen from the result is the 

difference in FPS performance for YOLOv3-Tiny and 

YOLOv3-Tiny-PRN as compared to original YOLOv3 and 

YOLOV3-SPP. Both tiny models were capable to achieve high 

FPS due to the small size model (shallow network) and hence 

lead to faster inference speed. Apart from that, the tiny based 

YOLOv3 architecture with and without PRN also acted 

differently in terms of FPS. YOLOv3-Tiny-PRN achieved 

102.4 FPS compared to YOLOv3-Tiny with 99.9 FPS for Open 

Image dataset. PRN uses the approach to have a shortcut or skip 

connection that allow the features to bypass the next layer and 

jump to the layer in front or after the next layer. This will allow 

the process and network to have less parameters, less 

computation and hence increase the speed of execution [25]. 

In comparison for both datasets, the mAP for The Brackish 

Dataset trained model were successfully exceed 90% while 

Open Images Dataset trained model were struggled to achieve 

even 80%. The reason behind this difference is due to the total 

number of train images in the dataset. Underwater life in 

Google Open Images Dataset V6+ was quite lower compared 

to The Brackish dataset. This proves that for classification and 

detection in deep learning, the accuracy increases with the 

increase in training data size [31], [32]. 

Over and above, YOLOv3 architecture proves the ability to 

be trained and has good capability in detecting objects in 

challenging environment such as in The Brackish Dataset. This 

can be seen in Fig. 6, where all models were showing a good 

performance in detecting objects in a murky environments 

which has low visibility. Apart from that, all the models 

especially the deeper model such as YOLOv3 and YOLOv3- 

SPP revealed the benefits of the architecture by successfully 

detecting objects across scales as shown in Fig. 6 and Fig. 7. 

The ability in detecting objects at longer distance that resulted 

in small scale objects was a proved to the benefits from the 

process of up-sample layers that concatenated with the previous 

layer which helped preserve the fine grained features for small 

objects [9]. 

 

V. CONCLUSION 

This study is proposed to compare different YOLOv3 models 

by focusing on the architecture configurations for object 

detection such as original YOLOv3, YOLOv3-SPP, YOLOv3-

Tiny, YOLOv3-Tiny-PRN. Two main performance metrics 

were evaluated that are mAP and FPS to determine the 

efficiency of the models’ ability to detect underwater life. In a 

nutshell, this study shows a significant evidence that YOLOv3 

is applicable to be implemented to detect underwater objects 

which specific environment such as haze/cloudy and low light 

conditions. Even though the results shows that different models 

outperformed another model in terms of their performances, the 

YOLOv3 model itself own its ability to provide better accuracy 

and processing time. However, this study is limited to detect 

and classify between four to six classes of underwater images 

due to available dataset restriction and machine limitations. 
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