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ABSTRACT 

 

The molecular interaction between the chelating agents of citric acid (CA), 

ethylenediaminetetraacetic acid (EDTA), and triethylenetetraamine (TETA) with metals (M = Ba, 

Y, and Zr) were studied using Density Functional Theory (DFT) method. This study aims to 

determine the type of bonding between M–O/N bonds in the CA/EDTA/TETA– complexes. In 

this study, each metal was attached at strategic positions of chelating agents and was optimized at 

B3LYP/6-31G* and UGBS level of theory. The M–O bonds were characterized based on Atoms–

in–molecules (AIM) and Electron Localization Function (ELF) in the topological analysis. In AIM 

analysis, the total electron energy density at the bond critical point (BCP) of the M–O/N bonds are 

used to estimate the interaction involved. The low values of ρ(r) and positive values of ∇2ρ(r) 

indicates that ionic character exists in the M–O/N bonds. In ELF color-filled map, the blue shaded 

region between M–O/N atom acts as an indicator for the existence of the ionic interaction. Both 

AIM and ELF results confirm the existence of ionic bonding between M–O/N bonds, with values 

of ρ(r) and ∇2ρ(r) ranging from 0.02 to 0.12 au and 0.09 to 0.5 au respectively. Further analysis on 

charge distribution at M–O/N bonds show that the opposite charge between Ba, Y, and Zr with 

O/N assured the M–   O/N ionic bonding interactions. 
 

Keywords: Density functional theory, metals, bonding, atom–in–molecules, bond critical point, 

electron localization functions 
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INTRODUCTION  
 

In past years, chelating agents such as CA, EDTA, and TETA are tremendously used as a chelator 

to trap metal in various fields such as the cleaning industry, medical treatment, food industry, to 

name a few. These chelating agents possessed lone pair electron that can bind with metal to form 

metal–complexes. Recently, CA, EDTA, and TETA have been subjected by researchers in the 

initial step of the formation of metal–complexes in producing ceramic materials [1-3]. As reported 

in [3], the presence of these chelating agents in the initial step produces better results in the 

formation of metal oxide. Different chelating agents give different strengths during the chelation 

process. Hence, these initial steps are vital to obtaining stable metal–complexes for use in the 

subsequent process. However, the understanding of chemical bonding involved in the metal–

complexes at the molecular level is still ambiguous when involving large metals such as barium 

(Ba), yttrium (Y), and zirconium (Zr). 

 

The chemical bonds are of utmost importance in understanding the chemical phenomena. 

Chemical bonds are the attraction between two or more atoms, which involved the sharing or 

transfer of electrons (covalent/ionic) [4]. The different type of chemical bonds gives different 

chemical and physical properties of the compound. There are numerous theoretical studies on the 

analysis of chemical bonding [5-9]. Atom-in-molecules (AIM) [10] and Electron Localization 

Function (ELF) [11] are among the tools that have been used to determine the chemical bonding 

in a compound. Both AIM and ELF are approaches to electron density analysis. These analyses 

can be used, for example, to elucidate the bonding of the removal or adsorption of chemical 

compounds [12,13]. 

 

In this study, we performed quantum mechanical calculations on metal–complexes at the 

microscopic level. To determine the chemical bonding nature of M–O, and M–N bonds in metal–

complexes, the AIM and ELF analysis have been carried out on the most stable configurations of 

the complexes considered. This analysis would help chemists or physicists to get a better 

understanding of the chemical bonds in the metal–complexes at the molecular level. The binding 

energies of the configurations and the related discussion have been previously reported [14].  

 

EXPERIMENTAL  

 

Theoretical Section 

 

All molecular geometries were fully optimized at DFT by using hybrid functional of Becke–3–

parameter (B3) [15] and Lee–Yang–Parr (LYP) [16], also known as B3LYP, together with 6–31G* 

and UGBS basis sets. These two basis sets are included because of the unavailability of the 6–

31G* to the metals, and UGBS is a capable basis set to model the wave function of the metals. To 
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imitate the pH condition, CA is deprotonated by the removal of three hydrogen atoms. Each metal 

(Ba, Y, and Zr) was initially attached to the strategic position of CA. All calculations are carried 

out in the Gaussian09 suite of programs [17]. The AIM and ELF analysis are performed using 

Multiwfn [18] software. AIM can identify the type of chemical bonding by considering selected 

properties at some critical points. The electron density, ρ(r) and Laplacian electron density, ∇2ρ(r) 

at BCP between two pair atoms often used as a descriptor to understand chemical bonding 

involved. The ELF is a probability of finding an electron in regions of space at a given point by 

analyzing the function in the form of: 

 

𝐸𝐿𝐹(𝑟) =
1

1+(
𝐷(𝑟)

𝐷˳(𝑟)
)

2 ,                                                                (1) 
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3 ,                                                      (3) 

𝜌(𝑟) = ∑𝑁
𝑖=1 |𝜑𝑖(𝑟)|2 .                                                      (4) 

 

The summation of i is done for all N φi molecular orbitals; D(r) is indicated as the excess 

kinetic energy density caused by Pauli repulsion, while D˳(r) is considered as Thomas-Fermi 

kinetic energy density for homogeneous electron gas; ρ(r) is the electron density. ELF introduced 

by Becke and Edgecombe [11], describes the bonding takes place between two pair of atoms. The 

unit-less values of ELF are restricted from 0 to 1.  

 

RESULTS AND DISCUSSION 

 

The topological analysis based on electron density were analyzed from the wave function obtained 

at B3LYP/6–31G* level of theory. Results from AIM analysis of electron density for metal–

complexes systems revealed the BCP in M–CA/EDTA/TETA complexes. BCP is the point 

between two adjacent atoms, which defines a bond between the atoms. The positions of BCP 

(orange dots) in the M–CA/EDTA/TETA complexes system were portrayed in Figures 1-2. It can 

be noticed from Figure 1 that the small orange dots indicate BCP exists between M–O/N bonds 

nearby. This shows that the electron density is practically built–up between these M–O/N bonds.  
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Figure 1: Positions of the BCP (orange dot) critical points in metal–CA/EDTA/TETA complexes 

 

 

The parameters of BCP can be related to the interatomic interaction such as ionic, covalent, 

or van der Waals interaction [10,19]. To give a deep understanding of the interactive nature 

between M–O/N in these metal complexes, the BCP at M–O, and M–N bond are characterized by 

electron density (ρ(r)) and Laplacian electron density (∇2ρ(r)). Value of electron density (ρ(r)) and 

the sign of Laplacian of electron density (∇2ρ(r)) are significant in determining the type of bonding. 
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The large value of ρ(r) indicates the strong covalent bonding [20,21], while the Laplacian 

elucidates the accumulation (∇2ρ(r) < 0) and depletion (∇2ρ(r) > 0) of charge [22]. The 

corresponding properties of the BCP at M–O, and M–N bonds for metal–CA/EDTA/TETA 

complexes were tabulated in Tables 1, 2, and 3 respectively. 

 

İn general, all the values of ρ(r) obtained for all metal–complexes at M–O/N bonds are 

low, in the range of ~0.02 to 0.12 au (as shown in Tables 1, 2, 3). The ∇2ρ(r) observed for all 

metal–complexes are found to be exhibit a positive value in the range of ~0.05 to 0.50 au. 

According to [23], the low value of ρ(r) and the positive value of ∇2ρ(r) represents a non–covalent 

character. Vice versa, the large values of ρ(r) (~0.5) and negative ∇2ρ(r) (around –0.9) at BCP 

between C–N atoms indicates the involvement of covalent interactions [20]. It also reported by 

other work [10], that the high values of ρ(r) > 10–1 is referred to as the covalent system while the 

small values of ρ(r) ≈ 10–2 is referred to as the ionic system. Hence, this is a clear indication that 

the interaction involved is non–covalent. Based on these reports [10, 20-23], it can be concluded 

that the corresponding bond between M–O/N in this work is non–covalent bonding. 

 

The electron localization function (ELF) value of BCP at M–O/N bond also is identified 

quantitatively by AIM (as tabulated in Tables 1 to 3). ELF is a probability of finding an associated 

electron pair in the space at a given point [11]. ELF has been widely used to study the chemical 

bonding and atomic shell structure in a variety of systems [24-26]. Becke and Edgecombe [11] 

had restricted the value for ELF within a range of 0 to 1. The value close to 1 is interpreted as a 

perfect localization of electron while a value close to 0 is interpreted as delocalization of electron.  

 

As shown in Table 1, the ELF values for Ba–O, Y–O, and Zr–O in metal–CA complex 

calculated by AIM are low (in the range of ~0.1 to 0.28). Similar results are obtained for M–O/N 

in metal–EDTA and metal–TETA complexes where the ELF values are ranging from 0.08 to 0.32 

au. The low ELF value between two bonded atoms implies its ionic nature [7]. The values which 

are under ~3.5 are commonly considered as having the ionic character [6,20]. To establish the 

chemical bonding that takes place between M–O/N bonds, further analysis on ELF topological 

surface are determined and discussed in the next paragraph. 
 

Table 1: Properties of selected BCP (M–O) for M–CA complexes 

 

Bond (M–O) Electron density, ρ(r) 
Laplacian electron 

density, ∇2ρ(r) 
ELF 

Ba–O5 0.032 0.108 0.107 

Ba–O9 0.039 0.138 0.123 

Ba–O11 0.037 0.139 0.110 

    

Y–O5 0.049 0.216 0.119 
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Y–O9 0.079 0.339 0.181 

Y–O11 0.076 0.352 0.161 

    

Zr–O8 0.114 0.416 0.267 

Zr–O9 0.118 0.428 0.273 

Zr–O11 0.110 0.486 0.215 

 

Table 2: Properties of selected BCP (M–O/N) for M–EDTA complexes. 

 

Bond  

(M–O/N) 
Electron density, ρ(r) 

Laplacian electron 

density, ∇2ρ(r) 
ELF 

Ba–O1 0.029 0.094 0.099 

Ba–O3 0.029 0.097 0.101 

Ba–O5 0.032 0.106 0.111 

Ba–O7 0.031 0.103 0.108 

    

Y–O5 0.059 0.266 0.135 

Y–O6 0.056 0.251 0.130 

Y–O7 0.059 0.266 0.135 

Y–O8 0.056 0.250 0.130 

Y–N9 0.041 0.137 0.146 

Y–N10 0.041 0.137 0.147 

    

Zr–O5 0.087 0.377 0.192 

Zr–O6 0.083 0.360 0.182 

Zr–O7 0.087 0.377 0.192 

Zr–O8 0.083 0.360 0.182 

Zr–N9 0.055 0.158 0.221 

Zr–N10 0.055 0.158 0.221 
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Table 3: Properties of selected BCP (M–N) for M–TETA complexes. 

 

Bond (M–O) Electron density, ρ(r) 
Laplacian electron 

density, ∇2ρ(r) 
ELF 

Ba–N3 0.040 0.106 0.178 

Ba–N4 0.041 0.111 0.183 

Ba–N9 0.040 0.104 0.182 

Ba–N10 0.039 0.102 0.182 

    

Y–N3 0.062 0.204 0.203 

Y–N4 0.072 0.231 0.231 

Y–N9 0.071 0.247 0.205 

Y–N10 0.065 0.245 0.171 

    

Zr–N4 0.108 0.337 0.282 

Zr–N9 0.107 0.335 0.280 

Zr–N10 0.102 0.278 0.315 

 

Figure 2 shows the ELF color-filled map surface for metal–CA/EDTA/TETA complexes. 

In this analysis, the ELF topological surface is focussed on the region between metals (Ba, Y, and 

Zr) and oxygen or nitrogen atoms. The color range is from 0 (blue) to 1 (red). The red region 

elucidates the localization of electrons while the blue region (0) elucidates the delocalization of 

electrons. For all metal–complexes, the region between C–C atoms is shaded with orange color 

(refer Fıgure 2), which indicates that the electrons are localized. Hence, C–C bonds are covalent 

[24]. The red color on hydrogen (H) atoms implies a very high ELF value. In contrast, the region 

between metal Ba, Y, and Zr and oxygen or nitrogen are shaded with a blue color where electrons 

are delocalized, resulting in a low ELF value (close to 0). This blue region indicates that the 

involvement of ionic interaction between metals Ba, Y, Zr, and O atom [24]. The ELF color-filled 

map results correlate well with the ELF value calculated by AIM analysis (as tabulated in Tables 

1 to 3). 

This result also can be related to the decreasing charge of metal cations. Further analysis 

on charge distribution at M–O atoms shows that metal possessed a positive charge while oxygen 

possessed a negative charge. The original charge of metal Ba (+2), Y (+3), and Zr (+4) is 

decreased. The charge for metal and average charge for oxygen are as follow: Ba = +1.544, Y = 

+2.104, Zr = +2.672 and O = –0.4 to –0.7. Metal Ba, Y, and Zr possessed a positive charge due to 

the transfer of electrons while oxygen become negatively charged due to the gain of electrons. The 

decreasing charge of metal cations shows that the charge transfer occurs between M–O or M–N 
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bonds [27-28]. This is a clear indication that the transfer of charges occurs at M–O/N bond, thus 

assured the ionic interaction at M–O, and M–N bonds [29]. 
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Figure 2: The ELF color-filled map of metal–CA/EDTA/TETA complexes 

 

CONCLUSION 

 

The bonding analysis has been carried out by using AIM and ELF topological analysis to 

understand chemical bonding takes place between M–O/N bonds in metal–complexes. The AIM 
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reveals the existence of a bond between metal Ba, Y, Zr, and oxygen/nitrogen atom via BCP. Based 

on the AIM analysis, the value of ρ(r) and ∇2ρ(r) obtained corroborates well with their ionic nature. 

For all metal–complexes, the low ELF value with the blue shaded region between Ba–O/N, Y–

O/N, and Zr–O/N bonds in the ELF color-filled map elucidate the involvement of ionic interaction. 

Both AIM and ELF results confirming the existence of ionic bonding between M–O/N bonds with 

values of ρ(r) and ∇2ρ(r) ranging from 0.02 to 0.12 au and 0.09 to 0.50 au respectively. Further 

analysis on charge distribution at M–O/N bonds show that the opposite charge between Ba, Y, and 

Zr with O and the reduction of metal cations charge assured the M–O/N ionic bonding interactions. 

This study on the chemical bonding of metal-ligand complexes will be useful for providing a 

platform to understand the bonding nature of metal-oxygen and metal-nitrogen qualitatively and 

quantitatively at a molecular level. 
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