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The ripening stage is a stage where the fruit is ready to be harvested. During 

ripening, pectin activity is observed to trigger parenchyma cell wall middle 

lamella dissolution of a fruit. Additionally, the ripening stage also affects the 

changing appearance of the fruit. Thus, this research aims to develop a 

classification model based on ANN that can predict or classify the ripening 

stage based on either pectin activity or fruit appearance. The study will focus 

specifically on Ficus carica (fig). To achieve the objective, the researchers 

developed two Multilayer Perceptron (MLP) models: figNN and pectinNN. 

We trained figNN using features extracted from images of figs with different 

ripening stages, and pectinNN with a set of the statistical value of pectin 

activity such as weight (W), brix of sugar (BS), extraction yield (EY), and 

degree of esterification (ED) from 30 figs with varying degree of ripening. 

From the result of this research, figNN and pectinNN can distinguish the 

ripening stage based on either the chemical properties or the images. 

Furthermore, we can also show that the image-based classification is more 

accurate than the pectin-based classification. For future work, the study of 

the correlation between pectin and image features is highly encouraged. 

Keywords: Multilayer Perceptron (MLP); figs; fruit ripening; pectin; image 

analysis. 

1. INTRODUCTION 

Pectin is a heteropolysaccharide acidic structure found in the primary and middle lamellas and 

cell walls of land-dwelling plants [1]. Galacturonic acid is the main component of the pectin. 

This acid is a sugar acid that is derived from galactose. In commercial production, it is produced 

as a white to light brown powder extracted from fruits. This powder is usually used as a gelling 

agent in food like jams and jellies. It is also used as a stabilizer for fruit juices and milk 
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beverages, a source of dietary fibre, dessert toppings, medicines, and candies [2]. The quantity, 

structure, and chemical composition of pectin varies across plants, over time within the plant 

itself, or at different fruit's ripening stages. 

 

Figure 1: The ripening processes in fruits development [3] 

Due to ripening enzymes such as pectin, the cells' mechanical properties lead to different levels 

of fruits' ripening as shown in Figure 1. There are three stages in the fruiting process and this 

activity would be identical in all types of fruits. The first process is known as 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡, 

followed by 𝑟𝑖𝑝𝑒𝑛𝑖𝑛𝑔, and lastly 𝑝𝑜𝑠𝑡ℎ𝑎𝑟𝑣𝑒𝑠𝑡. The most desired stage for harvesting is 

ripening [3].  

Fig is a source of nutritional substance for human populations. Fig can be freshly consumed, 

either unpeeled or not. Pectin activity is observed to trigger parenchyma cell wall middle 

lamella dissolution of a fruit [4]. Hence, many figs are commonly lost to spoilage every year 

due to pectin activity in fruit [5]. Therefore, it is imperative to determine the ripening stage to 

avoid further waste. However, to the best of our knowledge, no comprehensive work has been 

performed to utilise pectin activity and image analysis to predict the various fruit ripening stages 

using Artificial Neural Network (ANN). Thus, this research's main objective is to classify fruit 

ripeness based on pectin activity and image analysis. In this paper, we propose two ANN 

models, namely figNN and pectinNN. The key contributions of the proposed models include: 

1. Our model figNN classify the ripening level based on image analysis of the fruit, i.e., 

figs skin colour. These figs skin colour can be obtained by extracting the colour from a 

static image captured by a camera.  

2. Our model pectinNN classify the ripening level based on the pectin activity of the fruit, 

i.e., the weight, brix sugar level, extraction yield, and degree of esterification.  

It should be noted here that, to the best of our knowledge, this work is among the first attempt 

to run an image and pectin into ANN to realize ripening classification for fruit, notably for fig. 

We will also discuss how the choice of the number of hidden nodes will affect classification 

performance. The paper is organized as follows: Section 2 covers common theoretical 

background for neural network algorithms. Section 3 present the methodology of the study. 

Section 4 presents the results and discussions on both models from various perspectives. The 

final Section 5 concludes the work and suggest possible future work.  

2. THEORETICAL BACKGROUND  

ANN is a form of artificial intelligence that possesses the ability to learn from features or data. 

The use of ANN is currently wide-spreading through the applications of pattern recognition, 

control, estimation, and classification [6, 7, 8, 9] . In this work, our choice of models is based 
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on Multilayer Perceptron (MLP) network, a feed-forward ANN class. The structure of an MLP 

network consists of three categories of layers: an input layer, hidden layer, output layer. The 

network structures often designed with a nonlinear activation function to provide nonlinear 

behaviour, which is crucial in performing the applications [10]. Figure 2 shows a typical model 

of an MLP network.  

The ability to learn in MLP is partly attributed to the back-propagation (BP) method [10]. This 

training algorithm is based on error minimization at the output layer. One factor that can 

improve the learning ability of MLP is the number of hidden nodes in the hidden layer. 

=R1

=R2

=RN

...

samples with size M hidden layer, X1 output layer, P

......

P1

P2

PN

...

F1F2F3F4FM

input layer, X0

labels 
with size 
N

Figure 2: A Hypothetical Example of a Multilayer Perceptron Network 

3. METHODOLOGY 

The figNN and pectinNN proposed in this work are evaluated based on the two case studies that 

include: 

1. classification of fig using skin colour of the fig; and 

2. classification of fig using pectin activity of the fruit. 

All experiments are carried out using both figNN and pectinNN to understand better how well 

our proposed models are compatible in predicting the figs ripening behaviours. The procedure 

to obtain those data are outlined in the following subsections. 

3.1 Experimental data preparation 

The dataset is the first case study that comes from the skin colour of the figs. A camera captures 

30 sets of figs images from a predetermined distance. There are seven variations in a single set, 

which include different angles (left, right, top, bottom, front, back) and cross-section of the 

fruit. Thus, a total of 30 × 7 images are taken for colour feature extraction, with each image 

has a size of 4000 × 3000. Then, to extract the colour features from the fig images, 𝐻𝑆𝑉 (Hue, 

Saturation, Value) model is employed. This model is said to be robust to the influence of light 

intensity from the environment. The features are extracted by computing the colour histogram 

of each channel into a dedicated number of bins. The numbers of bins are 15, 5, and 5 for the 

𝐻, 𝑆, and 𝑉, respectively. These features are then reshaped to become a 1𝐷 feature vector 𝐹𝑚 

with a size of 375. In the case where the total number of variations are seven, the feature vectors 
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are concatenated to build a single feature vector with 2625 dimensions as illustrated in Figure 

3. 

       

 
1 × 375 

 
1 × 375 

 
1 × 375 

 
1 × 375 

 
1 × 375 

 
1 × 375 

 
1 × 375 

       

𝐹1  𝑅1 

𝐹2  𝑅3 

𝐹3  𝑅2 

… … … 

𝐹30  𝑅3 

  2625   

Figure 3: Example of extracted feature vectors from 30 figs colour images 

There is a total of 30 × 2625 feature vectors in the dataset. Every 2625 feature vector is 

labelled to ripening level 𝑅1, 𝑅2, and 𝑅3 accordingly, where 𝑅1 is development, 𝑅2 is ripening 

and 𝑅3 is postharvest. The only pre-processing technique to be applied to the dataset is 

scalarisation to the range of 0~1, which requires the computation of the Equation (1): 

𝑿𝑛𝑜𝑟𝑚  =  
𝑿𝐻𝑆𝑉

𝐻 × 𝑊
 (1) 

 

where 𝑿𝐻𝑆𝑉 is the value of a single feature vector, 𝐻 and 𝑊 are the height and width of the 

image, respectively. After the scalarized feature vectors 𝑿𝑛𝑜𝑟𝑚 are obtained from the fig’s 

images, the vectors are then fed into figNN for the classification task. 

In the second case study, the dataset consists of a set of weight (𝑊), brix sugar level (𝐵𝑆), 

extraction yield (𝑌), and degree of esterification (𝐷𝐸) from 30 figs with varying ripening stages. 

There is a total of 30 sets. Table 1 shows an example of data collected from 30 figs. Similar to 

the first dataset, each set is labelled to ripening level 𝑅1, 𝑅2, and 𝑅3 accordingly. The procedures 

to acquire the dataset are as follows: 

Table 1: Sample data of weight (𝑊), brix sugar level (𝐵𝑆), extraction yield (𝑌), degree of esterification (𝐷𝐸), 

and ripening label (𝑅) from multiple figs 

W (g) BS (%) Y (%) DE (%) R 

48 5.10 2.58 55.50 𝑅1 

33 6.50 2.19 39.21 𝑅1 

71 6.70 4.52 10.30 𝑅2 

69 6.30 8.43 13.72 𝑅2 

78 6.90 26.19 23.43 𝑅3 

82 8.60 27.77 31.93 𝑅3 

… … … … … 
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3.1.1 Brix Sugar Level of figs Method 

First, a fig is measured by weighing scale at the beginning of the experiment (𝑊, 𝑔). The fruit 

is cut into small pieces and crushed by either a lab blender or mortar and pestle. Then, the pulp 

or seeds are removed by filtering the solution through a filter paper to a beaker.  

Next, we clean the Brix refractometer (Kern, Germany) carefully with a soft cloth. We use a 

pipette (Eppendorf, Germany) to place a few drops of the filtered solution onto the prism. We 

gently close the cover to avoid producing bubbles. Then, we observe the scale through the 

eyepiece while pointing directly to a light source (𝐵𝑆, %).  

3.1.2 Extraction yield (Extraction method) 

First, a fig is peeled by a knife. We dried off the fig's skin in an oven at 50 °𝐶 for 36 hours and 

grounded the dried skins in a coffee blender to produce skin powder (𝑊𝑑𝑟𝑖𝑒𝑑 , 𝑔). We keep the 

powder figs in the dark air-tight containers at ambient temperature (24 ± 1 °𝐶).  

For the extraction, 3 𝑔 of powdered figs (𝑊𝑝𝑜𝑤𝑑𝑒𝑟 , 𝑔) is mixed with 50mL of distilled water 

acidified with citric acid (𝑝𝐻 = 2.0) into the 100 𝑚𝐿 beakers. Then, the mixture is heated at 

90 °𝐶 for 60 minutes in a water bath. We immediately filter the heated solution through a 

muslin cloth before performing centrifuge at 5350 𝑥 𝑔 for 15 min to obtain a clear solution. 

Later, we cool the solution to 24 ± 1°𝐶 for 1.5 h, and two volumes of ethanol are added into 

the solution. We repeat the centrifuge process at 5350 𝑥 𝑔 for 60 min. Then, we dry off the 

solution in an oven at 50 ± 1°𝐶 for 16 h and measure the dried solution weight (𝑊𝑝𝑒𝑝𝑡𝑖𝑛, 𝑔). 

Lastly, we calculate the extraction yield (𝑌, %) using the Equation (2):  

𝑌 =
𝑊𝑑𝑟𝑖𝑒𝑑 − 𝑊𝑝𝑒𝑐𝑡𝑖𝑛

𝑊𝑑𝑟𝑖𝑒𝑑 − 𝑊𝑝𝑜𝑤𝑑𝑒𝑟
× 100 (2) 

3.1.4 Degree of esterification (Titration method) 

First, we add 3 𝑚𝐿 of ethanol (96%) to dried figs pectin and dissolve the mixture with 20 𝑚𝐿 

of deionized water. We stir the solution at under 150 𝑟𝑝𝑚. Then, we add a few drops of 

phenolphthalein reagent to the solution before titrating the solution with the volume (𝑉1, mL) 

of 0.1𝑁 NaOH. Next, we add 10 𝑚𝐿 of 0.1 𝑁 NaOH to the solution and stir for 15 minutes. 

We repeat the stirring process while adding 0.1 𝑁 HCl is added into the solution until the pink 

colour dissipates. Lastly, we titrate the solution with volume (𝑉2, mL) of 0.1 𝑁 NaOH until pink 

colour appears. We measure the degree of esterification (𝐷𝐸, %) by using the Equation (3): 

𝐷𝐸 =
𝑉2

𝑉1 + 𝑉2
× 100 (3) 

3.2 MLP Configurations  

ANN models developed in our experimental work are the two MLP, namely figNN and 

pectinNN. Table 2 provides the details of both models. Exponential linear unit (𝑒𝑙𝑢) activation 

function from the Equation (4) is applied to the outputs of all hidden layers due to their superior 

performance, as suggested by many previous works [11]:  
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𝑿𝐿 = {
𝑿𝐿−1 𝑖𝑓 𝑿𝐿−1 > 0

𝑎 × exp (𝑿𝐿−1 − 1) 𝑒𝑙𝑠𝑒
 (4) 

 

where 𝐿 is a current layer, 𝐿 − 1 is a previous layer and 𝑿𝐿−1 is the input from the previous 

layer and 𝑎 is a trainable hyperparameter. 

Finally, a softmax layer at the output layer is responsible for classifying the input patterns into 

several predefined labels 𝑃𝑛 using the Equation (5):  

𝑃𝑛 = exp(𝑋𝑛
𝐿−1) {∑ exp(𝑋𝑛

𝐿−1)

𝑁

}

−1

 (5) 

 

Where N is the number of outputs at 𝑃 [12]. 

Table 2: figNN and pectinNN model for the fig ripening classification 

Model Layer Type Total Neurons Activation function 

figNN 𝑋0 Input 2625 𝑒𝑙𝑢 

 𝑋1 Fully Connected 𝑣𝑎𝑟𝑖𝑒𝑑 (Table 3) 𝑒𝑙𝑢 

 𝑃 Output 3 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

pectinNN 𝑋0 Input 4 𝑒𝑙𝑢 

 𝑋1 Fully Connected 𝑣𝑎𝑟𝑖𝑒𝑑 (Table 3) 𝑒𝑙𝑢 

 𝑃 Output 3 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

3.3 Training Methodology  

Table 3 depicts the default hyperparameter for our training. We divided bBoth datasets were 

divided to 50% training, 10% validation and 40% in the test. In this work, all training procedures 

and MLP models were developed from scratch. We trained our models using the k-fold cross-

validation method with 𝑘 = 3. k-fold cross-validation method is useful in avoiding 

classification overfitting problem [13]. The models are trained for 1000 epochs within each 𝑘. 

At the beginning of every training epoch, the training samples are shuffled to ensure that they 

can learn robustly and produce better learning performance.  

Table 3: Training configuration 

CPU Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz 2.30 GHz 

GPU GeForce GTX 1050 4GB 

RAM 16GB 

Framework TensorFlow, Keras 

OS  Windows 10 

Dataset & model skin colour (figNN), pectin (pectinNN) 

Training epoch 1000 

k-fold 3 

Optimizer Adam:𝛽1 = 0.9, 𝛽2 = 0.99 

Initial learning rate 0.001 

Hidden nodes setting  1, 2, 3, 4, 5, 6, 7, 8, 9, 10 
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Glorot normalisation is performed in the weight initialisation process at the start of every new 

training repetition [14]. As for the learning algorithm, all models use Adam as an optimiser 

[15]. We will also discuss how the choice of the number of hidden nodes will affect the 

classification performance.  

We apply accuracy and Random Mean Square Error (RMSE) to evaluate MLP models' fitness. 

Accuracy is computed using the Equation (6): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
1

𝑀
∑ 𝐷𝑚

𝑀

) × 100 (6) 

𝐷𝑚 = {
1 𝑖𝑓 𝑷𝑚 = 𝑹𝑚

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

 

Where 𝑀 is the total samples in the training dataset. At 𝑚𝑡ℎ sample, 𝑷𝑚 is a set of predicted 

ripening levels and 𝑹𝑚 is the set of actual ripening levels. Higher accuracy means a higher 

ability to determine the label correctly. RMSE is computed using the Equation (8): 

𝑅𝑀𝑆𝐸 = √ 1

𝑀 × 𝑁
∑ ∑(𝑃𝑛𝑚 − 𝑅𝑛𝑚)2

𝑁𝑀

 (8) 

 

Where N is the number of labels at the output layer. In this case, N=3 corresponds to the three 

ripening levels. At 𝑚𝑡ℎ sample and 𝑛𝑡ℎ label, 𝑃𝑛𝑚 is predicted ripening levels while 𝑅𝑛𝑚 is 

actual ripening levels.  

4. RESULT AND DISCUSSION 

We examined the proposed models' learning performance by studying their classification 

accuracy and RMSE on validation and test dataset. Table 4a and Table 4b show the results of 

figNN. Table 5a and Table 5b are results for pectinNN, with various hidden nodes setting within 

1000 training epochs. All average values are calculated from k-fold cross-validation results. 

Figure 4 shows the overall performance of both models.  

  

Figure 4: Overall performance of figNN vs pectinNN 
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Table 4a: figNN Validation and Test Accuracy after 1000 epoch on skin colour dataset 

Hidden nodes 
validation accuracy (%) test accuracy (%) 

k=1 k =2 k =3 Average k =1 k =2 k =3 Average 

1 100.00 100.00 83.33 94.44 83.33 66.67 75.00 75.00 

2 100.00 100.00 83.33 94.44 91.67 83.33 91.67 88.89 

3 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

4 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

5 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

6 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

7 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

8 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

9 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

10 100.00 100.00 83.33 94.44 91.67 91.67 91.67 91.67 

 

Table 4b: figNN Validation and Test RMSE after 1000 epoch on skin colour dataset 

Hidden nodes 
validation RMSE test RMSE 

k=1 k =2 k =3 Average k =1 k =2 k =3 Average 

1 0.0026 0.0328 0.0957 0.0437 0.0909 0.1486 0.1056 0.1150 
2 0.0000 0.0027 0.0557 0.0195 0.0554 0.0697 0.0481 0.0577 
3 0.0000 0.0000 0.0611 0.0204 0.0556 0.0543 0.0385 0.0495 
4 0.0000 0.0000 0.0604 0.0201 0.0600 0.0560 0.0410 0.0524 
5 0.0000 0.0000 0.0550 0.0183 0.0557 0.0572 0.0461 0.0530 
6 0.0000 0.0000 0.0531 0.0177 0.0562 0.0553 0.0503 0.0540 
7 0.0000 0.0000 0.0604 0.0201 0.0561 0.0578 0.0427 0.0522 
8 0.0000 0.0000 0.0615 0.0205 0.0556 0.0606 0.0480 0.0547 
9 0.0000 0.0000 0.0604 0.0201 0.0559 0.0577 0.0421 0.0519 
10 0.0000 0.0000 0.0614 0.0205 0.0558 0.0595 0.0439 0.0530 

 

The proposed figNN and pectinNN both clearly show high average accuracy in classifying the 

ripening level, at 91.67% and 77.78% respectively. This demonstrates the effectiveness of the 

training. Moreover, both models show very low average RMSE, with figNN at 0.0495 and 

pectinNN at 0.1214. Figure 4 also shows a huge performance gap between figNN and pectinNN. 

This is owing to figNN is developed and trained with a high number of 𝐻𝑆𝑉 features, whereas 

pectinNN are trained on limited features of pectin chemical properties.  

Table 5a: pectinNN Validation and Test Accuracy after 1000 epoch 

Hidden nodes 
validation accuracy (%) test accuracy (%) 

k=1 k =2 k =3 Average k =1 k =2 k =3 Average 

1 50.00 33.33 66.67 50.00 50.00 25.00 16.67 30.56 

2 100.00 66.67 33.33 66.67 41.67 66.67 33.33 47.22 

3 83.33 50.00 33.33 55.56 41.67 41.67 25.00 36.11 

4 83.33 100.00 33.33 72.22 83.33 58.33 75.00 72.22 

5 83.33 66.67 100.00 83.33 58.33 41.67 83.33 61.11 

6 66.67 66.67 66.67 66.67 75.00 66.67 50.00 63.89 

7 83.33 66.67 50.00 66.67 83.33 33.33 33.33 50.00 

8 66.67 50.00 33.33 50.00 50.00 66.67 66.67 61.11 

9 66.67 66.67 33.33 55.56 66.67 66.67 66.67 66.67 

10 83.33 66.67 50.00 66.67 83.33 83.33 66.67 77.78 
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Table 5b: pectinNN Validation and Test RMSE after 1000 epoch 

Hidden nodes 
validation RMSE test RMSE 

k=1 k =2 k =3 Average k =1 k =2 k =3 Average 

1 0.1895 0.2270 0.1146 0.1770 0.2903 0.2364 0.2966 0.2745 

2 0.0168 0.1383 0.2720 0.1424 0.3842 0.1608 0.2622 0.2691 

3 0.1061 0.2532 0.2268 0.1954 0.2089 0.2708 0.2361 0.2386 

4 0.1156 0.0464 0.3594 0.1738 0.0941 0.1378 0.2450 0.1589 

5 0.0930 0.2465 0.0447 0.1280 0.1443 0.3733 0.1007 0.2061 

6 0.1262 0.1377 0.1452 0.1364 0.1526 0.1602 0.3084 0.2071 

7 0.1117 0.1458 0.1796 0.1457 0.1029 0.3382 0.3548 0.2653 

8 0.1572 0.2987 0.1717 0.2092 0.2828 0.2015 0.1340 0.2061 

9 0.1663 0.1939 0.2951 0.2184 0.1278 0.1934 0.1661 0.1624 

10 0.1009 0.1582 0.3350 0.1980 0.0659 0.1101 0.1884 0.1214 

 

The number of hidden nodes in the hidden layer contributes to the overall accuracy and RMSE 

as well. However, the effects are different in both models. By referring to figNN results in Table 

4a and Table 4b, the increasing number of hidden nodes do not necessarily mean that the 

accuracy and RMSE performance will be improved significantly. For instance, as the number 

of hidden nodes is getting higher, the figNN accuracy becomes stabilized. Still, RMSE becomes 

stagnant, suggesting that a high number of hidden neurons will not improve network 

performance. However, the opposite effect can be observed in pectinNN results. Based on 

pectinNN results in Table 5a and Table 5b, the impact of good performance is noticeable as we 

increased the number of hidden nodes were increased. This provides solid evidence that a higher 

number of nodes in pectinNN tend to result in better network performance. 

We examined the impact of applying image features vs pectin chemical properties to MLP 

input. Figure 5 and Figure 6 illustrates the learning curves of figNN and pectinNN during 

training and validation. Overall, figNN converges better than pectinNN. Figure 5a vs Figure 6a 

gives a clear indication of how well the figNN performs on the training and validation set even 

within 100 epochs only. Referring to Figure 5b vs Figure 6b, the steep RMSE curve in figNN 

training and validation signifies an excellent generalisation performance of the proposed model. 

Given the same figs are used for both datasets, it is essential to note that the fig skin colour-

based approaches are better than the pectin activity-based approach. This demonstrates the 

superiority of image-based solution in solving the ripening classification problem. 

  

Figure 5: Average accuracy and average RMSE of figNN in training set and validation set during 1000 epoch 
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Figure 6: Average accuracy and average RMSE of pectinNN in training set and validation set during 1000 

epoch 

5. CONCLUSION 

In conclusion, we have described the recent work on the classification of figs’ ripening level. 

In this paper, we developed two MLP models that took the image and pectin properties of a 

fruit, namely fig, as its input and classify the fruit ripening level.  

The first proposed MLP model, figNN can classifies effectively the ripening level based on figs 

skin colour. Our second MLP model, pectinNN, can classify successfully the ripening level 

based on the fruit's pectin activity. In the same experiment, we have also discussed the 

relationship between the number of hidden nodes and our models' learning capability. In 

summary, the proposed MLP learning ability can be affected by the number of hidden nodes.  

For future work, we suggest using Machine Learning (ML) method such as Deep Neural 

Networks (DNN) to correlate pectin activity with image features of figs. Over the last decade, 

significant developments of the ML approaches have led to many advances in various science 

and engineering, but the application to predict pectin activity based on image features is scarce.  
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