

DEPARTMENT OF BUILDING SURVEYING FACULTY OF ARCHITECTURE, PLANNING AND SURVEYING UNIVERSITI TEKNOLOGI MARA CAWANGAN PERAK KAMPUS SERI ISKANDAR

CONSTRUCTION OF REINFORCEMENT CONCRETE FOR FLOOR AND SLAB (COMPLETE)

SYAZLIN AZWANI BT BAHRIM 2014884184 DIPLOMA IN BUILDING SURVEYING

PRACTICAL TRAINING REPORT DECEMBER 2016 – MARCH 2017

DECLARATION:	
I hereby admit that this report is the result of my own efforts, except for the that are attached from sources that specified in reference chapter.	e certain parts
Prepared By:	
(SYAZLIN AZWANI BT BAHRIM)	Date:
Approved By:	
(SR MARIATY BT MOHD BAHARI)	Date:

ABSTRACT

Composite slab systems were first developed in the late 1930s for use in tall buildings. At that time, this technique brought a considerable dead-load reduction and was essentially seen as a substitute for traditional reinforced concrete slabs. The behaviour of composite slabs with decking has elements in common with both reinforcement and beam systems: decking with embossment or anchorages compares to reinforcement, whereas the decking itself is an element with bending rigidity similar to steel beams. Because of their efficiency and advantages, composite slabs were soon applied to a wide range of construction projects invariably based on structural steel framing.

Table of Contents

CHAPTER 1	6
COMPANY BACKGROUND	6
1.1 INTRODUCTION	7
1.2 OVERVIEW	8
1.3 OBJECTIVE OF PRACTICAL TRAINING	9
1.4 SCOPE OF WORK	10
1.5 METHODOLOGY OF REPORT	12
1.6 COMPANY BACKGROUND	13
1.7 LOCATION PLAN	16
1.8 MISSION, VISSION, TAGLINE AND CORE VALUE	17
1.8.1 MISSION	18
1.8.2 VISION	18
1.8.3 TAGLINE	18
1.8.4 CORE VALUE	18
1.9 QUALITY POLICY AND QUALITY OBJECTIVE	19
1.9.1 QUALITY POLICY OF KENWINGSTON SDN BHD (KWS)	19
1.9.2 QUALITY OBJECTIVE	19
1.10 LIST OF COMPLETE PROJECT Error! Bookmark no	ot defined.
1.11 ON GOING DEVELOPMENTS Error! Bookmark no	ot defined.
CHAPTER 2	24
LITERATURE REVIEW	24
CONSTRUCTION OF SLAB)	24
2.1 INTRODUCTION OF RC WORK	25
2.1.1 CONCRETE GRADE	26
2.2 DEFINITION OF RC WORK	27
2.2.1 SLAB	27
2.3 SUSPENDED CONCRETE FLOOR SLAB Error! Bookmark no	ot defined.
2.4 TYPES OF DESIGN FOR CONCRTE FLOOR SLAB	30
2.4.1 CONSTRUCTION DRAWING Error! Bookmark no	ot defined.
2.4.2 SOIL INVESTIGATION	34
I.5 REINFORCEMENT DESIGN FOR CONCRETE	36

2.5.1 SIZE OF REBAR AND REINFORCEMENT BAR	37
2.5.2 CONCRETE	38
2.5.3 CONCRETE MIXING	39
2.6 METHOD OF REINFORCEMENT WORK	40
2.7 ADVANTAGE OF SUSPENDED CONCRETE FLOOR SLAB	41
2.8 TYPE OF MECHANICAL FOR CONCRETE PUMP	42
CHAPTER 3	44
CASE STUDY	44
(CONSTRUCTION OF CONCRETING SLAB AT CASE STUDY)	44
3.1 INTRODUCTION OF CASE STUDY	45
3.1.1 LOCATION OF CASE STUDY THE HENGE	45
3.2 ORGANISATION CHART OF THE HENGE, KEPONG	48
3.3 CONSTRUCTION OF CONCRETE FLOOR SLAB	49
3.3.1 CONSTRUCTION OF FLOOR SLAB	52
3.4 CONSTRUCTION OF FORMWORK, IT IS INSTALLATION BOARD F FLOOR SLAB.	
3.5 INSTALLATION OF REINFORCEMENT STRUCTURE FOR BEAM.	
3.6 INSTALLATION OF SERVICE PIPE	57
3.7 INSTALLATION THE BRC ON THE FLOOR BOARD FRAME	59
3.8 INSTALLATION THE BRC ON THE FLOOR BOARD	61
3.9 INSTALLATION THE BRC ON THE FLOOR BOARD	64
CHAPTER 4	65
PROBLEMS AND RECOMENDATION	65
4.1 PROBLEMS AND RECOMMENDATIONS	66
CHAPTER 5	67
CONCLUSION	67
5.0 CONCLUSION	68
APPENDIX	70
REFERENCES	71
Book and website	72

LIST OF FIGURES