THE EFFECT OF TEMPERATURE IN FABRICATING THE P-N-P JUNCTION TRANSISTOR BY USING LIQUID DOPANT ON SILICON (100) WAFER

ELIYA BINTI NAMADDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Industrial Physics in the Faculty of Applied Science Universiti Teknologi MARA

MAY 2011

ACKNOWLEDGEMENT

Assalamualaikum w.b.t,

Firstly, I would like to express my grateful to ALLAH S.W.T for giving me the mercy and good health to finish my FSG 660 (final year project). Then, I also would like to thank to my most helpful and respected lecturer which is my supervisor, Miss Farah Liyana Binti Muhammad Khir who had given a lot of co-operation and favor to guide me along the process in completing this project.

Besides, not forget to my family who had gives me a lot of support and encouragement. Also thanks to En. Khatab and and En. Hanif, thank you for the co-operation with successful result. For those people around me who gives information and advice that related to my project.

Lastly, I hope my project will help me to obtain knowledge and exposure in the fell of science and technology as well as to introduce some basic techniques and tools that can be use in the future.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	. V
LIST OF FIGURES	vi
ABSTRACT	viii
ABSTRAK	ix

CHAPTER 1 INTRODUCTION

Background of study			
1.1.1	Overview of semiconductor	1	
1.1.2	Basic semiconductor crystal structure	3	
1.1.3	Energy band diagram	5	
1.1.4	Type of semicondcutor	6	
1.1.5	Semiconductor doping	6	
1.1.6	The operating principle of a p-n diode	8	
1.1.7	The operating principle of a transistor	9	
1.1.8	Application of p-n-p junction transistor	10	
Proble	em statement	11	
Significance of study		11	
Objective of study		11	
	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 Proble Signifi	 1.1.1 Overview of semiconductor 1.1.2 Basic semiconductor crystal structure 1.1.3 Energy band diagram 1.1.4 Type of semicondcutor 1.1.5 Semiconductor doping 1.1.6 The operating principle of a p-n diode 1.1.7 The operating principle of a transistor 1.1.8 Application of p-n-p junction transistor Problem statement Significance of study 	

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction	÷.	12
2.1	Diffusion process		12
	2.1.1 Junction formation		12
	2.1.2 Diffusion		13

2.2	Dopant		16
	2.2.1	Extrinsic electrical properties	18
CHA	PTER	X3 METHODOLOGY	
3.0	Introd	uction	20
3.1	Mater	ial and Equipment	
	3.1.1	The list of chemicals	21
	3.1.2	The list of equipments	21
	3.1.3	The list of gases	21
3.2	Flow	process for fabrication	22
3.3	Fabric	cation semiconductor process	
	3.3.1	Wet cleaning process	24
	3.3.2	Oxidation process	24
	3.3.3	Photolithography process	25
		3.3.3.1 Mask 1 (Alignment)	27
		3.3.3.2 Mask 2 (p region)	28
		3.3.3.3 Mask 3 (p region)	29
		3.3.3.4 Mask 4 (n region)	30
		3.3.3.5 Mask 5 (Open contact)	31
		3.3.3.6 Mask 6 (Metal)	32
		3.3.3.7 Master mask	33
	3.3.4	Etching process	34
	3.3.5	Diffusion process	34
ġ	3.3.6	Aluminum deposition process (PVD)	35
	3.3.7	Metal etching process	37

CHAPTER 4 RESULT AND DISCUSSION

4.0	Introduction	38
4.1	Characterization of SiO ₂ by using Filmetrics measurement	38
4.2	The analysis of the patterning	41
4.3	The characterization of sheet resistance by using 4-point probe	43

ABSTRACT

THE EFFECT OF TEMPERATURE IN FABRICATING THE P-N-P JUNCTION TRANSISTOR BY USING LIQUID DOPANT ON SILICON (100) WAFER

In this study, a P-N-P junction by using solid dopant on silicon (100) wafer was designed and fabricated. Silicon has been used as the substrate to fabricating a device. Bipolar junction transistor (BJT) were made either PNP or NPN junction depending on the configuration of the layers. From this study, P-N-P junction transistor was fabricated. In the photolithography process of the P-N-P junction transistor, there were five mask design pattern that would be used.

P-type dopant which was boron would be used during the diffusion process. The fabrication of P-N-P junction transistors would be made on silicon (100) wafer. The process can be controlled by using the different of temperature and time during the diffusion process. An observation done to ensure the effect of temperature. The relationship between dopant concentration and sheet resistivity would be analyzed by using 4-point probe measurement. The I-V characteristic testing also were tested to obtained the electrical characteristic of the devices.

The result show that the devices were fabricated at 6 different values of diffusion temperatures which were at 700°C, 750°C, 800°C, 900°C, 950°C, and 1000°C. After characterized processed, its found that the sheet resistance is depending on the temperature in diffusion process. At temperature 700°C, 750°C, 900°C, 950°C, and 1000°C, the value of the sheet resistance were 61108.16 Ω /sq, 33677.90 Ω /sq, 14565.02 Ω /sq, 1747.88 Ω /sq and 545.43 Ω /sq respectively but only one sample given the different value of sheet resistance got was 96155.02 Ω /sq respectively. So it concluded that , there have a relationship between sheet resistance, diffusion time, concentration of dopant and temperature during the fabrication process.

viii