DECOLORIZATION AND DEGRADATION OF TEXTILE DYES BY BACTERIAL

NUR FARZANA BINTI MAT ZUKI

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance of study	4
1.4	Objective of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Wastewater from textile industry	6
2.3	Azo dyes	7
2.4	Treatment methods	9
2.5	Decolorization and degradation of azo dye by bacteria	10
2.6	Mechanism microbial of color removal	11
2.7	Factor affecting bacterial decolorization	13
	2.7.1 Effects of pH	13
	2.7.2 Effects of temperature	14
	2.7.3 Effects of dye concentration	14

CHAPTER 3 METHODOLOGY

3.1	Materials	15
	3.1.1 Chemicals and reagents	15
	3.1.2 Apparatus	16
	3.1.3 Preparation of medium culture	17
	3.1.4 Preparation of azo dye	18
	3.1.5 Preparation of bacteria	19
3.2	Methods for degradation of azo dye	20

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Decolorization and degradation of Orange G dye	22
4.2	Efficiency of degradation for Orange G dye	29

CHAF	TER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	39
5.2	Recommendation	40
CITED REFFERENCES		41
APPE	NDICES	44
CURI	CULUM VITAE	54

APPENDICES	
CURICULUM VITAE	

LIST OF TABLES

Table	Caption	Page
4.1	The blank absorbance of Orange G dye at pH 3.5	22
4.2	The blank absorbance of Orange G dye at pH 7.5	23
4.3	The absorbance of Orange G dye at 50 ppm and pH 3.5	24
4.4	The absorbance of Orange G dye at 60 ppm and pH 3.5	25
4.5	The absorbance of Orange G dye at 70 ppm and pH 3.5	25
4.6	The absorbance of Orange G dye at 50 ppm and pH 7.5	26
4.7	The absorbance of Orange G dye at 60 ppm and pH 7.5	27
4.8	The absorbance of Orange G dye at 70 ppm and pH 7.5	28

ABSTRACT

DECOLORIZATION AND DEGRADATION OF TEXTILE DYES BY BACTERIAL

Wastewater is the main environmental obstacles for the development of the textile industry besides other issue like solid waste and resource waste management. Textile industry use many kinds of dyes and discharge large amounts of highly colored wastewater. This highly colored wastewater will give many impacts to aquatic life, human health and also affect the photosynthetic function in plant. It also give effects to certain forms of marine life due to the circumstances of chlorine present in the synthetic dyes. So, textile wastewater need to be treated before their discharge. Biological treatments are most preferred treatment than physicochemical approaches due to the cost effectiveness and environmental friendliness. When used biological treatment, azo dyes are degraded and reduced by various microorganisms. This research deals with the degradation and decolorization of Orange G dye by bacteria, *Pseudomonas aeruginosa*. The maximum degradation of Orange G dye is 35.64 % at 50 ppm within 1 hours at pH 7.5 and temperature 30°C. The absorbance for the degradation were analysed by using UV-Vis spectrophotometer. So, it is proved that the effective degradation of Orange G dye by bacteria is at lower temperature, lower concentration and at alkaline pH. Thus, it is the effective method for the growth of wastewater treatment methods in the textile industries.