TRANSESTERIFICATION OF PALM OIL FOR BIODIESEL PRODUCTION USING CaO AS HETEROGENEOUS CATALYST

NOOR AINI IZATIE BINTI MOHD KAMALLUDDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

]	Page	
		EDGEMENTS	iii	
TABLE OF CONTENTS				
	OF TA		vi	
		GURES	vii	
		BREVIATIONS	viii	
	RACT		ix	
ABST	RAK		Х	
CHA	PTER 1	INTRODUCTION		
1.1		round of study	1	
1.2	U	em Statement	4	
1.3	Signif	icant of study	5	
1.4	Object	tive of study	7	
CHA	PTER 2	LITERATURE REVIEW		
2.1	• •	of catalysts	8	
2.2	Proper	rties of CaO-based catalyst	10	
2.3	The ca	atalytic activity of CaO in biodiesel production	12	
2.4	Mechanism of catalyst			
2.5	Suppo	orted base catalyst	18	
CHAI				
CHA 3.1		METHODOLOGY	20	
5.1	Materi	Raw material	20 20	
			20	
		Chemicals and reagents Apparatus	20	
		Equipment and analytical instrument	20	
3.2	Metho		21	
5.2	1.100000	Catalyst preparation	21	
	3.2.1	Catalyst preparation Catalyst characterization	21	
	3.2.2	Transesterification with calcium nitrate support alumina		
	5.2.5	beads	23	
	3.2.4	Analysis of Gas Chromatography-Mass Spectrometer		
	2.2.	(GCMS)	24	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Thermogravimetric Analysis	25
4.2	Biodiesel Yield of Transesterification of Palm Oil	28
4.3	GC Qualitative and quantitative Analysis	30

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	36
5.2	Recommendation	37
CIT	ED REFERENCES	38
APP	PENDICES	44
CUR	RRICULUM VITAE	51

LIST OF ABBREVIATIONS

- BET : Branauer-Emmett-Teller
- DAG : Diacylglycerols
- DMSO : Dimethyl sulfoxide
- ER : Eley-Ridael
- FAME : Fatty Acid Methyl Ester
- FFAs : Free Fatty Acid
- LHWW : Langmuir-Hinshel-wood-Hougen-Watson
 - min : minute
 - MPS : Mean Pore Size
- TAGs : Triacylglycerols
- TGA : Thermogravimetric Analysis
- THF : Tetrahydrofuran
- WCO : Waste Cooking Oil
- rpm : retention per minute

ABSTRACT

TRANSESTERIFICATION OF PALM OIL FOR BIODIESEL PRODUCTION USING CAO AS HETEROGENEOUS CATALYST

Biodiesel is an alternative to classic diesel fuel because it is derived from a fuel from vegetable oil or animal fat and is a capable substitute for petroleum-derived diesel. Transesterification is the most widely used method in synthesize of biodiesel. Recently, application of heterogeneous catalyst has attracted considerable interest in biodiesel production compared to homogenous catalyst. Thus, Calcium oxide (CaO) supported with alumina beads impregnated with nickel (II) nitrate hexahydrate, Ni (NO₃)₂.6H₂O as a dopant. The parameter studied was catalyst loading of 0, 2, 4, 6 and 8 wt%. CaO was prepared at calcination temperature of 700°C after characterized by thermogravimetric analysis (TGA). In this study, the highest yield 24.24% was obtained from transesterification reaction at optimum condition of 5 h, 1:25 methanol-oil molar ratio and 65°C of reaction temperature with 4 wt% of catalyst loading. Apart from that, gas chromatography mass spectrometer shows that the presence of methyl ester peak which are hexadecanoic methyl ester, $C_{17}H_{34}O_2$ and Methyl 11-Octadecenoate, $C_{19}H_{36}O_{2}$.