SCREENING FOR CHEMICAL COMPOSITION AND EXTRACTION OPTIMAZATION OF COOKED RICE WITH AND WITHOUT Musa paradisiaca LEAVES

NURUL HUSNA BINTI FAKHARAZI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENTS

	Page
ACKNOLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	X
ABSTRACT	xi
ABSTRAK	xii
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	3
1.3 Significance of study	4
1.4 Objectives of study	5
CHAPTER 2 LITERATURE REVIEW	
2.1 Rice composition	6
2.1.1 Nutrition fact of white rice	7
2.2 Adverse effect of high rice consumption	8
2.2.1 Type 2 diabetes	8
2.3 Musa paradisiaca	9
2.3.1 Beneficial of <i>Musa paradisiaca</i>	10
2.4 Phytochemical and active compounds	12
2.4.1 Tannic acid	12

2.4.2 Alkaloid	12
2.5 Instrumental analysis	13
2.6 Liquid-liquid extraction	14
2.6.1 Principle of LLE	14
2.6.2 Applications	14
	1.
CHAPTER 3 METHODOLOGY	
3.1 Apparatus	15
3.2 Chemical and reagents	15
3.3 Leaves sample	15
3.4 Cooking processes	16
3.4.1 Preparation of cooked rice without Musa leaves	16
3.4.2 Preparation of cooked rice with Musa leaves	16
3.5 Liquid-liquid extraction	17
3.6 GC-MS analysis	17
3.7 FTIR analysis	18
CHAPTER 4 RESULTS AND DISCUSSION	
4.1 FTIR analysis of cooked rice without Musa leaves	19
4.1.1 Liquid-liquid extraction of hexane	19
4.1.2 Liquid-liquid extraction of methanol	21
4.1.3 Liquid-liquid extraction of petroleum ether	22
4.2 FTIR analysis of cooked rice with Musa leaves	24
4.2.1 Liquid-liquid extraction of hexane	24
4.2.2 Liquid-liquid extraction of methanol	25

	4.2.3 Liquid-liquid extraction of petroleum ether	26
4.3	GCMS analysis of cooked rice without Musa leaves	30
4.4	GCMS analysis of cooked rice with Musa leaves	31
	4.4.1 Chemical composition of hexane extraction	31
	4.4.2 Chemical composition of methanol extraction	32
	4.4.3 Chemical composition of petroleum ether	33
	extraction	33
СН	APTER 5 CONCLUSION AND	36
RE	COMMENDATION	
CIT	PED DEFEDENCES	27
	TED REFERENCES	37
APl	PENDICES	41
CU	RRICULUM VITAE	44

ABSTRACT

SCREENING FOR CHEMICAL COMPOSITION AND EXTRACTION OPTIMIZATION OF COOKED RICE WITH AND WITHOUT Musa paradisiaca LEAVES

White rice is one of the essential cereals and staple food for more than half of the world's population, especially in Asia. Rice is known as the main source of carbohydrates and energy. Eating rice regularly may be of concern for some people, especially if it accounts for a large portion of daily food intake. High consumption of white rice related to the increased risk of diabetes in the world. The objectives of this study are to determine the potential compound present in the sample extraction of cooked white rice with and without *Musa paradisiaca* leaves by using liquid-liquid extraction. This study also optimization the uses of solvent used in this extraction namely hexane, methanol and petroleum ether in term of their ability to extract the compound present in both sample of cooked white rice. All the samples were analysed by using GCMS and FTIR. GCMS analysis showed that the hexadecanoic acid is the major compound detected among those extractions and for FTIR analysis revealed that both samples of cooked white rice showed many functional groups with specific wavenumber.