SYNTHESIS OF THE SILVER NANOPARTICLES USING *MORINDA CITRIFOLIA'S* ROOTS FROM ETHANOL EXTRACTS AND THEIR DEGRADATION OF METHYLENE BLUE

NURUL SYUHADA BINTI YUSOF

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of the study	1
1.2	Problem statement	4
1.3	Significant of study	5
1.4	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Nanoparticles	7
2.2	Nanoparticles importance	8
2.3	Nanoparticles properties and it uses	9
2.4	Nanoparticles synthesized method	11
2.5	Nanoparticles from plants	13
2.6	Morinda citrifolia	17
	2.6.1 <i>M. citrifolia</i> as nanoparticles	20
2.7	Nanoparticle for methylene blue dye degradation	21

CHAPTER 3 METHODOLOGY 3.1 Material & chemicals

3.1	Material & chemicals		23
3.2 Metho		ods	23
	3.2.1	Preparation of <i>M. citrifolia</i> root extract	23
	3.2.2	Biosynthesis of silver nanoparticles	24
	3.2.3	Optimization of silver nanoparticles synthesis	24
	3.2.4	Characterization of silver nanoparticles	26
	3.2.5	Degradation of methylene blue	26

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	MCE extract characterization	
4.2	Biosynthesis of silver nanoparticles	
4.3	Optimization for the synthesis of MCEN	31
	4.3.1 Concentration of MCE	31
	4.3.2 Reaction time	33
	4.3.3 Concentration of AgNO ₃ solution	34
	4.3.4 Initial pH value for MCE	36
	4.3.5 Temperature	38
4.4	Fourier transform infrared spectroscopy (FT-IR) analysis for MCEN	40
4.5	Photocatalytic degradation of MB	44

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Summary	48
5.2	Future research	49

CITED REFERENCES	50
APPENDICES	58
CURRICULUM VITAE	65

LIST OF TABLES

Table	Caption	Page
2.1	Pros and cons for biological assays of AgNPs at different techniques	12
2.2	Synthesis and application of biological nanoparticle from different plants	15
2.3	Plant species in AgNPs synthesis	16
4.1	FTIR spectrum of synthesized MCEN	42
4.2	Percent degradation with time interval	46
4.3	Type of dye using different nanoparticles with exposure time	47

ABSTRACT

SYNTHESIS OF THE SILVER NANOPARTICLES USING *MORINDA CITRIFOLIA'S* ROOT FROM ETHANOL EXTRACTS AND THEIR DEGRADATION OF METHYLENE BLUE

Morinda citrifolia was used as reducing and stabilization agents for the synthesis of nanoparticles with high dispersion controllable and stability shape and size. Our study was used ethanol extract of M. citrifolia's root to synthesize M. citrifolia AgNPs (MCEN) and this was applied in methylene blue degradation. To optimize the formation of AgNPs, different parameters including the concentration of MCE and AgNO₃, reaction time, initial pH value for MCE and temperature were investigated. MCEN was characterized by UV-Vis Spectrophotometer and FTIR. The optimum conditions were at 5 mL of MCE concentration, 90 min of reaction time, 1 mM of AgNO₃, pH 11.4 and 85 °C for MCEN formation. The formation of MCEN was confirmed by colour changes from yellowish to dark brown. The absorbance peak of MCEN were obtained in range 400 to 450 nm by UV-Vis Spectrophotometer. FTIR showed that plant compound has been capped with nanoparticles. MCEN have a good catalytic activity on methylene blue (MB) dye reduction. The percentage of MB degradation by MCEN at 97.11% for 240 min of exposure time. Nano-size dosage systems have the ability to improve activity and overcome phyto-related problems. The synthesis of metallic nanoparticles using MCE, it emerges as a safe alternative to conventional biomedical methods.