THE EFFECT OF METHANOL TO OIL RATIO ON BIODIESEL PRODUCTION VIA TRANSESTERIFICATION OF PALM OIL BY USING CaO/Ni SUPPORTED WITH ALUMINA BEADS

WAN NURUL SYAMIMI BINTI W TEH

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

		Page	
ACK	NOWLEDGEMENTS	iii	
TAB	LE OF CONTENTS	iv	
LIST	OF TABLES	vi	
LIST	OF FIGURES	vii	
LIST	OF ABBREVIATIONS	viii	
ABS	ГКАСТ	ix	
ABS	ГКАК	Х	
СПА	στες 1 ΙΝΤΟΛΟΠΟΤΙΛΝΙ	1	
1 1	Background of the study	1	
1.1 1 2	Problem statement	1	
1.2	Significant of study		
1.5	Objectives of study	5	
1.1	objectives of study	0	
СНА	PTER 2 LITERATURE REVIEW	7	
2.1	Type of catalyst	7	
2.2	Transesterification reaction	9	
2.3	GC MS Analysis	10	
		11	
	PTER 3 METHODOLOGY	11	
3.1	Materials	11	
	2.1.2 Chamical reagants	11	
	3.1.2 Chemical reagents	11	
37	Materials and methods	11	
5.2	3.2.1 Materials	12	
	3.2.2 Catalyst preparation	12	
	3 2 3 Transesterification	13	
	3.2.4 Thermogravimetric analysis (TGA)	13	
	3.2.5 GC MS Analysis	14	
CHA	CHAPTER 4 RESULTS AND DISCUSSION		
4.1	TGA Analysis	15	
4.2	GC-MS	18	

4.3	Percentage yield of FAME	21
CHAP	TER 5 CONCLUSION AND RECOMMENDATIONS	24
5.2	Future research	24 24
CITED REFERENCES		25
CURR	ICULUM VITAE	34

LIST OF TABLES

Table	Caption	Page
4.1	Methyl ester of biodiesel according to the results of GC-MS analysis	21

ABSTRACT

THE EFFECT OF METHANOL TO OIL RATIO ON BIODIESEL PRODUCTION VIA TRANSESTERIFICATION OF PALM OIL BY USING CaO/Ni SUPPORTED WITH ALUMINA BEADS

A study for alternative fuels has gained importance due to the increase in price of petroleum and environmental concerns. Studies suggested that, the lower molar ratio of methanol causes an incomplete reaction, whereas its higher molar ratio decreases the efficiency of glycerol separation from the excess methanol and also incurs additional production cost. In this study, biodiesel production via transesterification of palm oil has been studied in a heterogeneous system using calcium oxide coated on alumina support (CaO/Al₂O₃) doped with Ni. The prepared catalysts were then characterized by using thermogravimetric analyzer (TGA). The aims of this study are to produce biodiesel from palm oil catalysed by alumina bead supported calcium oxide, CaO/Al₂O₃ doped with Ni and to determine the effect of methanol to oil ratio prepared on the production of fatty acid methyl ester (FAME). Various methanol to oil ratio were studied such as 1:15, 1:25, 1:35, 1:45 and 1:55. As a result, the optimum methanol to oil ratio is 1:55. The catalyst loading was fixed to 6%. The characterization of catalyst was analysed by using TGA before calcined at temperature of 700°C. GC-MS analysis result showed that methyl ester contains hexadecanoate methyl ester, heptadecanoic acid methyl ester as an internal standard and trans-13-Octadecenoic acid methyl ester. The biodiesel obtained was characterized by GC-MS. Concerning the importance of this vegetable oil, the contribution of palm oil towards reduction of fossil fuel, possible methods for the production of biodiesel and the opportunity for the futures is very much important.