TRANSESTERIFICATION OF BIODIESEL FROM PALM OIL USING KI SUPPORTED ON ALUMINA BEAD

NUR SYAFIKA BINTI AZRI

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATION	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

·		
1.1	Background of the study	1
1.2	Problem statement	2
1.3	Significant of study	4
1.4	Objectives of the study	4
СНА	PTER 2 LITERATURE REVIEW	
2.1	Transesterification process	5
2.2	Effect of different catalyst on production process	6
2.3	Type of feedstock	7
2.4	Type of alcohol used	8
СНА	PTER 3 METHODOLOGY	
3.1	Materials and Chemicals	10
3.2	Instrument	10
3.3	Preparation of catalyst	11
	3.3.1 Characterization of catalyst	11
	3.3.2 Transesterification of catalyst potassium iodide support	
	alumina	12
	3.3.3 Characterization of produced biodiesel	13
СНА	PTER 4 RESULTS AND DISCUSSION	
4.1	TGA analysis on catalyst decomposition	14
4.2	Effect of catalyst loading on the biodiesel yield	16

	···· J·· ··· J·· · · · J·· · · · J·· ·	-
4.3	Qualitative analysis of FAME content in the biodiesel produced	20

CHAPTER 5	CONCLUSION		RECOMMENDATIONS
UIIAI I EK J	CONCLUSION	AND	NECOMMENDATIONS

5.1	Conclusion	25
5.2	Recommendations	25

LIST OF TABLES

Table	Caption	Page
4.1	FAME composition in biodiesel	24

LIST OF FIGURES

Figure	Caption	Page
4.1	TGA analysis on weight loss of the KI substance	15
4.2	The impure biodiesel yield obtained from transesterification process of palm oil	17
4.3	Pure FAME content in the biodiesel produced from transesterification process of palm oil	19
4.4	GC-MS chromatogram of internal standard	22
4.5	GC-MS chromatogram of FAME yield	23

ABSTRACT

TRANSESTERIFICATION OF BIODIESEL FROM PALM OIL USING KI SUPPORTED ON ALUMINA BEAD

In this research, the biodiesel was produced by transesterification process of palm oil catalysed by alumina-supported potassium iodide, KI/Al₂O₃. The catalyst was doped with nickel (II) nitrate and being calcined for 5 hours at temperature of 700°C according to the TGA analysis of weight decomposition. The transesterification process was carried out at 65°C in the round bottom flask for 5 hours. The effect of catalyst loading on the production of FAME was identified. For each reaction, the amount of catalyst loading was varied from 0 to 8 wt.% and the methanol to oil molar ratio was fixed at 1:55. The optimum catalyst loading was at 4 wt.% which have the highest yield (37.22%) of FAME content. Six peak of methyl ester was identified by using GS-MS analysis which are dodecanoic acid methyl ester, methyl tetradecanoate, hexadecanoic acid methyl ester, methyl stearate, (E)-9octadecenoic acid methyl ester, and 9,12-octadecadienoic acid (Z, Z) methyl ester. This study also showed that further increasing of catalyst loading after 4 wt.% will decrease the amount of FAME content in the biodiesel produced.