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Abstract

Pepper is an important agricultural commodity especially for the state of 
Sarawak. It is important to forecast its price, as this can help the policy makers 
in coming up with production and marketing plans to improve the Sarawak’s 
economy as well as the farmers’ welfare. In this paper, the time series models are 
used to forecast the Sarawak black pepper price. It is formally shown in this 
paper that the pepper price series does not follow a random walk process. 
Through a battery of diagnostic tests, this paper further shows that 
Autoregressive Moving Average (ARMA) time series models fit the price series 
well. The ARMA (1,0) model seems to be the best fitting model for predicting 
the pepper price based on the data used in this study.

1.0 INTRODUCTION

Pepper (Piper nigrum L.), which has been used as a spice since the 4th 
Century B.C. was first brought into Malacca in the year 1583 by the Portuguese 
(Abd. Rahman Azmi, 1993). Pepper crop cultivation gained its popularity in 
Johore and Singapore during the early 19th century and was widely planted in 
Sarawak since the mid-19th century. Today, 95% (10,100 hectares) of the crop is 
grown in Sarawak and only 5% is grown in other parts of Malaysia. Due to this, 
in the world market the pepper produced in Malaysia is commonly known as 
Sarawak pepper.
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Until 1980, Malaysia was traditionally the largest pepper producing 
country in the world. After that, Malaysia lost it leading position to India and 
Indonesia (Abd. Rahman Azmil, 1993) and in 20001 Malaysia ranked the world 
fourth largest producer of pepper after Vietnam, Indonesia and Brazil (Pepper 
Marketing Board Homepage, 2003). Pepper’s contribution to the local socio
economy is substantial. It is reported (Pepper Marketing Bulletin, January to 
March, 1999) that some 45,000 farming families and more than 115,000 workers 
are involved in the pepper industry1. The crop generates about a third of 
Sarawak’s agricultural export earnings.

' See also Merican (1985), Bong and Saad (1986), Dimbab et al. (1989) and Fang (1994) for more 
information issues related to pepper in Malaysia.

It is clear that pepper is an important agricultural commodity and hence it 
would be important to forecast its price, as this could help the policy makers in 
coming up with production and marketing plans, to improve the Sarawak’s 
economy as well as the farmers’ welfare. In light of this, this study attempts to 
forecast the pepper price using the time series models. We note here that a few 
studies in Malaysia have demonstrated the usefulness of time series modelling 
and forecasting in the agriculture sector (Fatimah and Gaffar, 1986a and 1986b; 
Mad Nasir 1992 and Lalang et al., 1997). For instance, Fatimah and Gaffar 
(1986) confirmed the suitability of Box-Jenkins univariate ARIMA models in 
agricultural prices forecasting.

It has also been shown (Fatimah and Gaffar, 1986) that ARIMA models are 
highly efficient in short term forecasting. Mad Nasir (1992) has noted that 
ARIMA models have the advantage of relatively low research costs when 
compared with econometric models, as well as efficiency in short term 
forecasting. Lalang et al. (1997) has also shown that ARIMA model is the most 
suitable technique for modelling palm oil prices. As for pepper prices there is no 
record of studies using time series models and in view of this it is important to 
conduct a study of pepper prices using time series models.

In section 2 of this paper, we briefly discuss ARMA time series modelling. 
In section 3, we present the methodology and results of fitting suitable time 
series models to Sarawak black pepper price and finally in section 4 our 
conclusions appear.
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2.0 ARMA TIME SERIES MODELLING

A sequence of uncorrected random variables each with mean 0 and variance o2 
is called a white noise process and is denoted by Z ~ N (0, o2).

An ARMA (p, q) time series model is defined as a sequence of observations (P,) 
that satisfy the following difference equation (Brockwell and Davis, 1996),

r, -tf., -...-4>py,.p = z, +elz,_l +e2zl_2+...+eqz,_q

(1)

where <h,- ,<l>p and 0,,are numerically specified values of parameters and 
Z, ~A(0, o2).

The process as defined in (1) is a weakly stationary process. A weakly 
stationary process is a process with constant mean and covariance (Brockwell 
and Davis, 1996).

The process of time series modeling involves transformation of data in 
order to achieve stationarity, followed by identification of appropriate models, 
estimation of parameters, validation of the model and finally forecasting. A 
complete description of these processes and steps of time series modeling is 
clearly explained in Brockwell and Davis (1996, pp. 135 - 175).

3.0 METHODOLOGY AND RESULTS
In this section, we present the methodology and results of fitting suitable time 
series models to Sarawak black pepper prices obtained from the Pepper 
Marketing Board, Malaysia. The series, consisting of 331 monthly data from 
January 1972 to July 1999, was divided into two portions for the purpose of this 
study. The first 318 observations were used for model fitting purpose, while the 
rest were kept for post-sample forecast accuracy checking.

The process of model fitting for the Sarawak black pepper price, was done by 
using computer software known as “Interactive Time Series Modeling - PEST 
module” (developed by Brockwell, Davis and Mandarino, 1996).
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The time series plot of Sarawak black pepper price is shown in Figure 1. 
Figure 1 indicates that there exists a generally increasing non-linear trend. The 
plots of the sample autocorrelation functions (ACF) and the sample partial 
autocorrelation functions (PACF) for this series are shown in Figure 2. Figure 2 
confirms that there exists a typical pattern of non-stationarity in the pepper price.

In order to achieve stationarity, the trend component should be detrended 
from the original series, which could be achieved by using either method of 
differencing or classical decomposition (Brockwell and Davis, 1996, p. 186). In 
this article, the original series was differenced at lag 1 (thus resulting the first 
differenced series) in order to achieve stationary pattern. The first differenced 
series may be represented by

(2)

Figure 1: Monthly Sarawak black pepper price in Kuching (Jan. 1972 to 
Jul. 1999)
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.511 .476 .449 .424 .400 .378 .352 .329 .310 .290

.270 .251 .234 .221 .209 .195 .182 .166 .152 .138

.124 .109 .093 .077 .062 .048 .027 .002 -.023 -.045
PACF: .960 -.236 .064 .058 .131 -.155 -.030 -.192 .107 .029

- .045 -.040 .186 -.035 .006 -.014 -.060 .051 .007 -.089
- .023 .077 -.010 .042 -.045 .001 .040 -.046 -.046 .003
- .005 -.043 .004 -.032 .032 -.00? -.120 -.055 .038 -.019

Figure 2: Sample ACF and PACF of the Sarawak black pepper price 
series.

We note here that if the first difference series ( ) is purely white noise,
then Equation (2) would reduced to

Y, = Y,_} (3) 

which implies that the original series follows a white noise process2.

2 We thank an anonymous referee for pointing this out.

To be consistent with the requirement of ARMA (p, q) modelling proce
dure, the mean was also subtracted from the series so that it could be modelled 
as a zero mean stationary process (Figure 3).
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Figure 3: Graph of Sarawak black pepper price after a lag 1 differencing.

The ACF and PACF of the first difference series are shown in Figure 4. It 
is obvious, from the sample ACF of the differenced series that most of the spikes 
had decayed to a level not significantly different from 033. Moreover, the 
dominant spike at lag 1 of the PACF is not so outstanding as before. Hence, this 
first difference series (Xt) appears to be stationary4. We note here that there is a 
possibility that X is indeed a white noise as the ACF and PACF values are all 
close to zero for most lags. However, a formal checking of the Q statistics for the 
first 12, 24 and 36 lags are thus conducted to see whether all lags are 
significantly zero. The computed Q statistics are, in that order, 42.175, 53.886 
and 66.287 respectively, implying that we have enough evidence to reject the null 
of white noise at 1% significance level. The implication of this finding is that the 
price level does not follow random walk behavior and this study therefore 
modelled it as a stationary ARMA model.

3 Spikes exceeding the 95% confidence intervals (horizon lines) considered significantly different 
from zero, where the 95% confidence intervals are computed on the basis of ± 1.96/ Jn, where n is 
the sample size. For n=331 as in our case here, the 95% confidence intervals are thus ±0.108 
(Brockwell and Davis, 1996, p. 143).

4 A formal statistical test of stationarity, namely the augmented Dickey-Fuller (ADF) Unit Root Test 
(see Dickey and Fuller, 1979 and Mackinnon, 1991 for details) was conducted and the results verified 
that the pepper price is non-stationary in its level but is stationary after the first differencing 
(Appendix A).
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ACF: .253 -.060 -.051 -.083 -.055 -.01Z .059.126 .047 .005 .003 -.009 .044 -.064.013 -.007 .003 .115 .054 -.046 .004-.003 -.050 -.023 -.015 .062 .245 .058PACE: .253 -.133 .000 -.083 -.018 -.008 .059.138 .006 .049 .016 .018 .046 -.103.020 -.052 -.009 .132 -.020 -.018 .058-.023 -.058 -.026 -.045 .044 .229 -.047

.047 .143 .109-.077 .025 .028-.044 -.062 -.002-.040 -.064 -.058.007 .148 .039-.065 .022 -.046-.035 -.001 .009.017 -.018 -.009

Figure 4: Sample ACF and PACF of Sarawak black pepper price after 
a lag 1 differencing.

Next, we identified tentative models for this transformed series by 
inspecting the ACF and PACF. The ACF revealed that autocorrelation 
coefficients are significant at 95% confident level at lag 1,9, 11, 24 and 365. The 
ACF values at other lags are all not significantly different from 0. This suggested 
that fitting moving average models of 24, 11,9 and 1 should be attempted. On 
the other hand, autoregressive models of order 1, 2, 9, 11 and 24 should also be 
taken into consideration as the PACF values at lag 1, 2, 9, 11 and 24 are 
significantly different from 0 at 95% confident level6. ARMA (p, q) models 
where p and q could be of order 1 or 2 were also considered in this study.

5 The ACF values for lag 1, 9, 11, 24 and 36 are 0.253, 0.143, 0.126, 0.115 and 0.245 respectively, 

which are all exceeding the 95% confidence intervals of — 0.108 as described in Footnote 1.

6 The PACF values for lag 1, 2, 9, 11, 24 and 36 are, in that order, 0.253, - 0.133, 0.148, 0.138, 0.132 

and 0.229 (Figure 4), which are all exceeding the 95% confidence intervals of — 0.108 as described 

in Footnote 1.
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Besides fitting ARMA (p, q) models, we also attempted to fit models by 
taking seasonality into account, as there exists of a seasonal trend in the Sarawak 
black pepper price (Sulau, 1981). In addition, the sample ACF of the original 
series displays a very slowly damped periodicity. According to Brockwell and 
Davis (1996), this indicates the presence of seasonal periods. Furthermore, a 
close inspection of the graph of the sample ACF in Figure 4 revealed that 
autocorrelation coefficients were significant at 95% confident level at lag 1, 9, 
11, 24 and 36. Since 24 and 36 are multiples of 12, it is reasonable to suspect that 
there is a seasonality of order 12. The presence of seasonality is reinforced, by 
the fact that PACF values at lag 24 and 36 are also significant at 95% confident 
level.

Following the classical decomposition method in “PEST”, a seasonal trend 
with a period of 12, and a quadratic trend from the series were eliminated. The 
ACF and PACF of the transformed series are presented in Figure 5. Since the 
ACF values decay slowly, the model is likely to come from AR family (Ahmad, 
2000); see also Janacek and Swift (1993, p. 145). AR models of order 1 and 2 
were among those being considered, as the PACF values at lag 1 and 2 are 
significant at 95% confident level.

ACF: .975 .941 .909 .881 .860 .838 .813 .781 .747 .713.676 .637 .603 .571 .541 .513 .481 .451 .423 .394.363 .331 .300 .272 .243 .214 .188 .161 .135 .110.082 .053 .022 .008 .039 .069 .106 .144 .181 .213PACF: .975 -.218 .099 .016 .109 -.063 -.049 .136 .003 -.061- 084 - 086 .098 -.015 .026 .008 -.076 .099 -.010 -.068-.078 .005 -.015 .012 -.097 -.014 .089 -.071 .015 .024-.039 .057 -.031 .094 .016 -.053 -.174 -.058 .039 -.001

Figure 5: Sample ACF and PACF of Sarawak black pepper price after a 
classical decomposition with seasonal period and a quadratic 
trend being taken away.

Note: ADF unit root test results of -2.292 and -3.747 (both significant at 5% 
level) for the regression that includes an intercept term and intercept with trend 
terms suggest that this deseasonalized and detrended series are stationary.

46



Next, the coefficients of each of the above tentative models were estimated 
using the “PEST' module. Results of the estimated models and the 
corresponding A1CC values [see Equation (4)] are summarised in Tables 1 and 2.

Various methods were employed to check the suitability of each model. 
These include checking the distribution as well as ACF and PACE of the model’s 
residuals, Ljung-Box Portmanteau Statistics, Mcleod-Li Portmanteau Statistics, 
Turning Point Test, Difference-Sign Test, and Rank Test.

We used the well-known minimum biased-corrected information criterion of 
Akaike, AICC (Hurvich and Tsai, 1989) to choose the best model. Out of a class 
of appropriate models, the best-fitted model is the one with the smallest AICC 
statistic. AICC statistic is given by

AICC = - 21n Likelihood ( <j>, 0 , d2) + [2n(p + q + 1)]/(n - p - q - 2). (4) 
where <[> = a class of autoregressive parameters;

0 = a class of moving average parameters;
a2 = variance of white noise;

n = number of observations;
p = order of the autoregressive component; 

and q = order of the moving average component.

Table 1: Estimated models for the first difference series.

No. ESTIMATED MODEL AICC

1 ARMA (26, 0)

X t = 0.2479X t _ ! -0.1603Xz_2 + 0.1019X t _ 7 + 0.1741X , _ 9 + 0.1420X z //

- 0.1252X z _ /7 + 0.1574X t _ 24 + ^t where { Z z} ~WN (0, O.(X)612)

-697.641

2 ARMA (11,0)

X t = 0.2688X t _ ! -0.1604X z_2 + 0.1574X t _8 + 0.1402X t _ /0 + 0.6906Xz_/z + Zz

where { Z t} ~ WN (0, 0.00612)

-690.620

3 ARMA (9, 0)

X z = 0.2814X z _ z + 0.14I7X z_ 7 + 0.I497X z _ 9 + Zz where { Z z} ~ WN (0, 0.00654)

-687.228

4 ARMA (2, 0)

X i = 0.2882X t _ J -0.I343Xz_2 + Zz where { Z z} ~ WN (0, 0.00612)

-681.710
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No. ESTIMATED MODEL AICC

5 ARMA (1,0)

X t = 0.2544X t _ ; + Z, where { Z t} ~WN (0,0.00612)

-678.018

6 ARMA (0, 26)

X, = Z, + 0.2949Z,_7 +0.0574Z,_7 +0.1399Z t_9 +0.1686Z z_77 + O.188OZ t_24 

where { Z t} ~ WN (0, 0.00626)

-694.754

7 ARMA (0, 24)

X t = Z t + 0.2944 Z t _ 7 + 0.0573 Z t _ 7 + 0.1397 Z t _ 9 + 0.1683 Z t _ n + 0.1876 Z t _ 24 

where { Z t} ~ WN (0, 0.00626)

-694.754

8 ARMA (0, 11)

X t = Z t + 0.2864 Z t _ ; + 0.0886 Z,_7 +0.1529 Z 9 -O.1343Z,_77

where { Z ,} ~ WN (0, 0.00642)

-689.867

9 ARMA (0, 9)

X t = Z z + 0.3214Z t_ 7 + 0.0623 Z t_ 7 + 0.1620 Z t_ 9 where { Z t} ~ WN (0, 0.00642)

-687.228

10 ARMA (0, 7)

X t = Z t + 0.3285 Z t _ 7 + 0.0838 Z , _ 7 where { Z ,} ~ WN (0, 0.00665)

-683.321

11 ARMA (0, 1)

X t = Z t + 0.3109 Z , _ 7 where { Z ,} ~ WN (0, 0.00670)

-682.946

12 ARMA(1, 1)

X t = - 0.2300X t _ 7 + Z t + 0.2864 Z t _ 7 where { Z t} ~ WN (0, 0.00668)

-680.028

13 ARMA (2, 1)

X t = 0.4942X t _ 7 - 0.1841X z _ 2 + Z t + 0.2864 Z z _ 7 where { Z ,} ~ WN (0, 0.00642)

-679.736

14 ARMA (2, 1)

X t = 0.2892X t _ 7 -0.1343Xz_2 +Zf where { Z ~ WN (0, 0.00642)

-681.710

Note: “ITSM” allows one to first estimate the ARMA (p, q) model and then 
optimize the estimation by omitting the insignificance lags.
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Table 2: Estimated models for the seasonally adjusted series.
No. ESTIMATED MODEL AICC

1 ARMA (12, 0)
Xz= 1.2120X,_7 +0.4376Xz_2 + 0.2482X t _ 3 - 0.1673X , _ 4 + 0.1512X,_9 - 
0.1599X,_w

+ O.1172X,_77 - 0.1430X,_72 + Z, where { Z,} ~ WN (0, 0.00579)

-712.689

2 ARMA (3, 0)
X( = 1.2648X,_ 7 -0.4209X,_2 + 0.1387X,_5 + Z, where { Z t} ~WN (0, 0.00613)

-706.017

3 ARMA (2, 0)
X,= 1.2316X,_7 - 2.4874X z _ 2 + Z z where { Z t} ~ WN (0, 0.00624)

-702.019

4 ARMA (1,0)
X t = 0.9863X t _ 7 + Z t where { Z ,} ~ WN (0, 0.00666)

-686.687

5 ARMA(1, 1)
X t = 0.9790X t _ 7 + Z t + 3.0214 Z t _ 7 where { Z ,} ~WN(0, 0.00681)

-707.289

6 ARMA (2, 2)
Xt= 1.4710X,_7 -0.4878X t_2 + Z , +0.2258 Z 2 where { Z ,} ~ WN (0, 0.00626)

-694.164

7 ARMA (0, 24)
X, = Z,+l.O575Z,_7 + 1.0567 Z,_2 + 0.9523 Z t _ 3 + 0.7705 Z 

+ 0.7780 Zt_6 + 0.9331 Z, _ 7 + 0.9642 Z t_8 + 0.8875 Z,_ 
+ 0.8356 Z,_ 77 + 0.6404 Z t_]2 +0.7271 Zt_j 3 + 0.5007 Z,_ 
+ 0.6316 Z t _ 16 + 0.4892 Z t _ 17 + 0.5793 Z t _ 18 + 0.5244 Z , _ 
+ 0.5858 Z,_27 + 0.4793 Z t _ 22 + 0.4998 Z t _ 23 + 0.3606 Z , 

where { Z z]

_4 + 0.8030 Z,_ 5
9 + 0.7792 Z t _ 10
14 + 0.5459 Z,_ 15
19 + 0.4737 Zt_20

-24
~ WN (0, 0.00670)

-647.389

8 ARMA (12, 0)
X,= 1.2234X,_7 -0.4129X,_2 + 0.1608X t _ 3 + O.O381X t _ 4 + 0.1425X,_9 -0.1428X 

t-10
+ O.1O68X,_77 + 0.1447X,_72 +Z, where { Z ,} ~ WN (0, 0.00577)

-714.055

9 ARMA (3, 0)
X,= 1.2650X,_7 -0.4210X,_2 + 0.1382X t_ 3 + Z t where { Z ,} ~WN (0, 0.00613)

-705.730

10 ARMA (2, 0)
X, = 0.1232Xz_7 -0.2490X t_2 + Zt where { Z t} ~ WN (0, 0.00624)

-701.791

11 ARMA (1,0)
X t = 0.9866X t _ 7 + Z t 
where { Z ,} ~ WN (0, 0.00670)

-683.387

Note: Models 1 to 7 contain linear trend. Models 8 to 11 contain quadratic trend.

According to the minimum AICC criterion, ARMA (12, 0) model (no. 8, 
Table 2) for the seasonally adjusted series had been chosen to be the most 
appropriate. The equation of this model is given by

X, = 1.2234X,.; -0.4129X,_2 + 0.1608 X,_5 + 0.0381X,_4 + 
0.1425X(_9 - 0.1428X ,0 + 0.1068X 11 + 0.1447X,-12 +Z,

(5) 

where { Z ,} ~ N (0, 0.00577)
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A forecast produced using this model is shown in Figure 6. It is clear from this 
figure that the actual price values are contained in the 95% forecast intervals as 
indicated by the dotted lines. Moreover, the trend of the fitted values is generally 
consistent to that of the actual values. These findings suggest that ARMA (12, 0) 
model can capture the actual black pepper price future movement almost 
perfectly.

Figure 6: Graph of monthly average Sarawak black pepper price (13 actual 
and forecasted values from July 1998 to July 1999).

Though the AICC statistics are useful in modeling time series, the performance 
of the model has still to be evaluated by post sample forecast accuracy criteria. 
In this paper we use the criteria as summarized in Table 3 to evaluate our models.

Table 3. Forecast accuracy criteria.

Mean absolute error, MAE =

Root mean square error, RMSE =

(6)

(7)

Mean absolute percentage error, MAPE = ml *■ I x 100 % (8) 
n

where x, = actual values, x, = forecast values and n = number of periods.

The smaller the values of MAE, RMSE and MAPE, the better the model is 
considered to be. In Tables 4 and 5, the MAE, RMSE and MAPE are listed.
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Table 4: Accuracy criteria of fitted models for the first-differenced series.

No. Models AICC MAE RMSE MAPE (%)
1 ARMA (26. 0) -697.641 230.452 280.417 17.643
2 ARMA (11, 0) -690.620 248.718 306.985 19.164
3 ARMA (9, 0) -687.228 127.014 148.556 9.608
4 ARMA (2, 0) -681.710 141.575 175.341 10.818
5 ARMA (1,0) -678.018 139.175 161.960 10.503
6 ARMA (0, 26) -694.754 189.135 236.855 14.570
7 ARMA (0, 24) -694.754 189.081 236.810 14.566
8 ARMA (0, 11) -689.867 120.184 148.927 9.160
9 ARMA (0, 9) -687.228 127.014 148.556 9.608
10 ARMA (0, 7) -683.321 138.848 158.274 10.381
11 ARMA (0, 1) -682.946 140.780 163.894 10.618
12 ARMA (1, 1) -680.028 141.311 166.169 10.684
13 ARMA (2, 1) -679.736 142.568 177.392 10.900
14 ARMA(2, 1) -681.710 141.586 175.276 10.818

Table 5: The accuracy criteria of fitted models for the seasonally adjusted 
series.

No. MODEL AICC MAE RMSE MAPE(%)
1 ARMA(12, 0) -712.689 86.420 100.343 6.356
2 ARMA(3, 0) -706.017 101.178 121.699 7.027
3 ARMA(2, 0) -702.019 112.598 135.689 7.790
4 ARMA(l.O) -686.687 73.880 91.906 5.462
5 ARMA(1. 1) -707.289 107.352 129.453 7.420
6 ARMA(2, 2) -694.164 221.617 233.244 15.725
7 ARMA(0, 24) -647.389 364.753 378.010 15.725
8 ARMA(12, 0) -714.055 90.160 105.487 6.555
9 ARMA(3, 0) -705.730 106.874 130.349 7.393
10 ARMA(2, 0) -701.791 119.949 142.294 8.327
11 ARMA(1, 0) -683.387 72.842 89.371 5.358

Note: Model 1 to 7 contains linear trend. Model 8 to 11 contains quadratic 
trend.

According to the post sample accuracy criteria, ARMA (1,0) model of 
the seasonally adjusted series (no. 11, Table 2) performs the best. It has the 
smallest MAE (72.842), RMSE (89.371) and MAPE (5.358) values 
simultaneously. Its equation is

X, = 0.9866X , , + Z, 
where Z, ~ N (0, 0.0067).

(9)
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Forecast produced using ARMA (1, 0) model is shown in Figure 7. Similar to the 
interpretation for ARMA (12,0) model, Figure 7 also indicates that ARMA (1,0) 
model can capture the actual black pepper price future movement almost 
perfectly.

Time Horizon (month) 

-------------95°6 FORECAST INTERVAL -------- O------FORECASTED VALUES ------- ■-------ACTUAL VALUES]

Figure 7: Graph of monthly average Sarawak black pepper price (13 actual 
and forecasted values from July 1998 to July 1999).

4.0 CONCLUSIONS

This paper takes up the modelling and forecasting of Sarawak black pepper 
price using the Autoregressive Moving Average (ARMA) time series models. It 
is formally shown in this paper that the pepper price series does not follow a 
random walk process. This paper further demonstrates that ARMA models fit the 
price series well and they are capable of predicting the future trend of the price 
movement. According to the minimum AICC criterion, ARMA (12,0) model was 
considered the best model for the Sarawak black pepper price. However, based 
on post sample accuracy criterion, the ARMA (1,0) model emerged as the best 
model. This result agrees with Lalang et al. (1997) that best model selected based 
on AICC criteria does not have to be the best, in term of post sample accuracy.

Finally, the recommended model for Sarawak black pepper price is the 
ARMA (1,0) model. This model is a parsimonious one and just depends on the 
most recent observation for forecasting. However continuous monitoring and 
updating of this model should be regularly taken up.
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APPENDIX A: AUGMENTED DICKEY-FULLER (ADF) UNIT ROOT 
TEST RESULTS

Notes: Yt and X, stand for the level and first difference of pepper price series 
respectively.

Variable

Intercept Without Trend Intercept With Trend

Y, X, Y, X,
ADF - 0.356 -7.400* -1.119 -7.454*

Critical Values

10% -2.572 -3.135

5% -2.871 -3.425

1% -3.453 -3.899

Critical values are given in MacKinnon (1991). Asterisk (*)  denotes 
rejection of the null hypothesis of unit-root at 1% significance level. The results 
suggest that the pepper price is not stationary but stability has been achieved after 
the first difference.
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