FOURIER TRANSFORM INFRARED (FTIR) AND ULTRAVIOLET-VISIBLE (UV-VIS) SPECTROSCOPY FOR THE FORENSIC DISCRIMINATION OF BALLPOINT AND MARKER PEN INKS

MUHAMMAD ADZRUL SHAZWAN BIN NADZRI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

PAGE

ii

ii1

LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK		
CHA	APTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of Study	4
1.4	Objectives of Study	5
CHA	APTER 2 LITERATURE REVIEW	6
2.1	Spectroscopy Method in Ink Analysis	6
	2.1.1 Fourier Transform Infrared (FTIR) Spectroscopy	6
2.2	2.1.2 UV-Vis Spectroscopy	11
2.2	Chromatographic Method in Ink Analysis	14
	2.2.1 High Performance Liquid Chromatography (HPLC)	14
	2.2.2 Thin Layer Chromatography (TLC)	10
CHA	APTER 3 METHODOLOGY	18
3.1	Instrumentation	18
3.2	Sample Collection	19
3.3	Sample Preparation for FTIR Analysis	21
	3.3.1 Ballpoint Pen Inks	21
34	Sample Preparation for UV-Vis Analysis	21
5.1	3.4.1 Ballpoint Pen Inks	21
	3.4.2 Marker Pen Inks	22
3.5	FTIR Analysis	22
3.6	UV-Vis Analysis	23
CHA	APTER 4 RESULTS AND DISCUSSION	24
4.1	FTIR Spectroscopy Analysis	24
	4.1.1 Ballpoint Pen Inks	24
	4.1.2 Marker Pen Inks	29
4.2	UV-Vis Spectroscopy Analysis	35

4.2 UV-Vis Spectroscopy Analysis

	4.2.1	Ballpoint Pen Inks	35
	4.2.2	Marker Pen Inks	39
СНА	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	42
5.1	Concl	usion	42
5.2	Recor	nmendations	42
CITI	ED REF	ERENCES	43
APPI	ENDICI		47

CURRICULUM VITAE	59
------------------	----

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	IR spectra of ballpoint inks studied by Feraru and Meghea (2014)	7
2.2	Spectra of the different brands of (a) ballpoint, (b) roller ball, (c) gel blue ink pen studied by Lee <i>et al.</i> (2012)	9
2.3	The UV–Vis Spectra for three types of pen inks studied by Senior <i>et al.</i> (2012)	13
2.4	UV–Vis absorbance spectra of permanent marker ink samples extracted by different solvents studied by Sharma <i>et al.</i> (2017)	14
3.1	FTIR Spectrometer (Perkin-Elmer Spectrum 100)	18
3.2	UV-Visible Spectrophotometer, Shimadzu model 1800 (Japan)	19
4.1	Overlapping of black ballpoint pen inks (FBL and PBL) for FTIR analysis	27
4.2	Overlapping of blue ballpoint pen inks (FB and PB) for FTIR analysis	28
4.3	Overlapping of red ballpoint pen inks (FR and PR) for FTIR analysis	30
4.4	Overlapping of black marker pen inks (PBLA, MBL, OBL) for FTIR analysis	32
4.5	Overlapping of blue marker pen inks (PBA, MB, OB) for FTIR analysis	33
4.6	Overlapping of green marker pen inks (PGA, MG, OG) for FTIR analysis	34
4.7	Overlapping of red marker pen inks (PRA, MR, OR) for FTIR analysis	36

ABSTRACT

FOURIER TRANSFORM INFRARED (FTIR) AND ULTRAVIOLET-VISIBLE (UV-VIS) SPECTROSCOPY FOR THE FORENSIC DISCRIMINATION OF BALLPOINT AND MARKER PEN INKS

Ink analysis is one of the areas in forensic questioned document aims in comparing and discriminating ink obtained from writing instrument used to write on a document. Ink becomes important forensic evidence when it is written on a document suspected to be associated with criminal activities such as threatening letters, insurance frauds and will frauds. The aims of this study is to discriminate two brands of ballpoint pen inks (Faster and Papermate) come with three different colours (black, blue, red) and also three brands of marker pen inks (Pilot, Monami and Orkey) with four different colours (red, black, blue and green). The discrimination was carried out by Fourier Transform Infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy using direct visual examination. The spectra patterns, peaks intensity and shapes were observed and compared. The results of this study demonstrate that conventional and low cost UV-Vis and FTIR spectroscopy could be used for discrimination of inks for forensic question document analysis.