EFFECT OF LITFSI COMPOSITION ON IONIC CONDUCTIVITY OF CARBOXYMETHYL CELLULOSE BASED SOLID POLYMER ELECTROLYTE

FATIN NUR AMALIA BINTI MOHAMED ZUHRI

Final Year Project Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

TABLE OF CONTENTS

Page

	NOWLEDGEMENTS	iii		
TAB	LE OF CONTENTS	iv		
LIST	OF TABLES	vi		
LIST	LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT			
LIST				
ABST				
ABST	ГКАК	xi		
CHA	PTER 1 INTRODUCTION	1		
1.1	Background of the study	1		
1.2	Problem statement	3		
1.3	Significant of study	4		
1.4	Objectives of study	4		
СНА	PTER 2 LITERATURE REVIEW	5		
2.1	Solid Polymer Electrolytes	5		
2.2	Carboxymethyl Cellulose	8		
2.3	Salts	11		
СНА	PTER 3 METHODOLOGY	14		
3.1	Materials	14		
3.2	Methodology	14		
	3.2.1 Preparation of CMC-LiTFSI solid biopolymer electrolyte film	14		
3.3	Sample Characterization	17		
	3.3.1 Electrochemical Impedance Spectroscopy (EIS)	17		
	3.3.2 FTIR spectroscopy	17		
	3.3.3 Thermo Gravimetric Analysis (TGA)	18		
	3.3.4 X –ray diffraction (XRD) analysis	18		
CHA	PTER 4 RESULTS AND DISCUSSION	19		
4.1	Electrical Impedance Spectroscopy	19		
4.2	Fourier Transform Infrared Spectroscopy	24		
4.3	Thermogravimetric Analysis	28		
4.4	X-Ray Diffraction	36		

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS		38
5.1	Conclusion	38
5.2	Recommendations	38
CITED REFERENCES		39
CURRICULUM VITAE		45

LIST OF TABLES

Table	Caption	Page
2.1	Ionic conductivity of SPEs with cellulose derivatives	10
2.2	Lithium salts with different polymer matrix	13
3.1	Composition of SPEs film	15
4.1	Ionic conductivity of polymer electrolyte films	20
4.2	FTIR frequencies of functional group samples	26
4.3	Decomposition temperature (Tg) of LiTFSI films	29

ABSTRACT

EFFECT OF LITFSI COMPOSITION ON IONIC CONDUCTIVITY OF CARBOXYMETHYL CELLULOSE BASED SOLID POLYMER ELECTROLYTE

This study was carried out to measure the effect of CMC- LiTFSI on ionic conductivity of CMC-based SPE. The SPEs sample was successfully prepared via solution casting and has been characterized by using Electrical Impedance Spectroscopy (EIS), Fourier Transform Infra-Red spectroscopy (FTIR), X-ray Diffraction (XRD) and Thermo Gravimetric Analysis (TGA) technique. An increase in amorphous nature of SPE observed as more LiTFSI added which correlate well with EIS result. The sample contain 30% LiTFSI exhibited the highest conductivity of 2.9100 X 10⁻⁷ S/cm at 303 K. The IR-spectra showed the occurrence of complexation between CMC and LiTFSI. An increase in the amorphous nature of the polymer electrolytes was confirmed by XRD analysis. The TGA studies reveal that incorporation of LiTFSI to enhance the thermal stability of the films. Amount of salt LiTFSI is added effectively to enhance the ionic conductivity and mechanical properties.