EFFECT OF ZINC OXIDE (ZnO) NANOFILLER ON THE IONIC CONDUCTIVITY OF CARBOXYMETHYL CELLULOSE – LiTFSI SOLID POLYMER ELECTROLYTE

NORSAIDATUL AMIRA BINTI AZMI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem statement	4
1.3	Significant of study	5
1.4	Objective of study	6
	• •	

CHAPTER 2 LITERATURE REVIEW

2.1	Solid Polymer Electrolyte	7
2.2	Carboxymethyl Cellulose	9
2.3	Composite Polymer Electrolyte	14

CHAPTER 3 METHODOLOGY 3.1 Materials

3.1	Materi	ials	18
3.2	Prepai	ration of Solid Polymer Electrolyte Film	18
3.3	Sampl	e Characterization	21
	3.3.1	Electrochemical Impedance Spectroscopy (EIS)	21
	3.3.2	Fourier Transform Infrared (FTIR)	21
	3.3.3	X-Ray Diffraction (XRD) Analysis	21
	3.3.4	Tensile Strenght Measurement	22

CHAPTER 4 RESULT AND DISCUSSION

4.1	Carboxymethyl cellulose-based solid polymer electrolyte	23
	4.1.1 Physical Properties	23
4.2	Electrochemical Impedance Spectroscopy (EIS)	24
4.3	Fourier Transform Infrared (FTIR) Analysis	29
4.4	X-Ray Diffraction (XRD) Analysis	34
4.5	Tensile Strength Measurement	37

LIST OF TABLES

Table	Caption	Page
2.1	The ionic conductivity of CMC based SPE	12
2.2	The ionic conductivity of SPE containing ceramic filler	16
3.1	Sample designation and composition	19
4.1	CMC-SPE with various ZnO filler content	24
4.2	The effect of ZnO nanofiller concentration amount on ionic conductivity of CMC solid polymer electrolyte	28
4.3	The FTIR absorption peak of functional group film	29
4.4	Tensile strength of CMC-LiTFSI-ZnO composite polymer electrolyte	38

LIST OF FIGURES

Figure	Caption	Page
1.1	Chemical structure of synthetic polymer based SPE	2
2.1	Chemical structure of natural biopolymers	9
2.2	The structure of cellulose in plant cell wall	10
2.3	Types and chemical structures of cellulose derivative	11
3.1	Flowchart for the preparation of composite biopolymer electrolyte	20
4.1	Photograph (a) of the transparent film CMC-LiTFSI (b) CMC-LiTFSI-ZnO solid polymer electrolyte (SPE)	24
4.2	Impedance spectra of composite polymer electrolyte; a) Neat CMC, b) CMC - 30wt.% LiTFSI, c) CMC - 30wt.% LiTFSI - 2wt.% ZnO, d) CMC - 30wt.% LiTFSI - 4wt.% ZnO, e) CMC - 30wt.% LiTFSI - 6wt.% ZnO and f) CMC - 30wt.% LiTFSI - 8wt.% ZnO	27
4.3	Graph of ionic conductivity of CMC solid polymer electrolyte	28
4.4	An ion-polymer interaction in the electrolyte matrix	30
4.5	FTIR spectra of CMC-LiTFSI-ZnO	32
4.6	Major peaks of FTIR spectra of CMC solid polymer electrolyte	33
4.7	Major hump peak of XRD of CMC-LiTFSI-ZnO	35
4.8	XRD patterns of CMC-LiTFSI-ZnO solid polymer electrolyte at varying loading percentage of ZnO nanofiller	36
4.8	Mechanical properties of the CMC-LiTFSI-ZnO	38

ABSTRACT

EFFECT OF ZINC OXIDE (ZnO) NANOFILLER ON THE IONIC CONDUCTIVITY OF CARBOXYMETHYL CELLULOSE – LiTFSI SOLID POLYMER ELECTROLYTE

Semi-crystalline properties of SPE impedes the ionic mobility and hence reduces its ionic conductivity. Addition of filler is an established method to improve ionic conductivity of SPE. In this study, composite polymer electrolyte comprising of CMC as polymer host, LiTFSI as charge carrier and ZnO as filler were prepared using solution casting method and characterized using EIS, FTIR, XRD and tensile strength measurement. The effect of concentration of ZnO in the composition was observed. This combination; CMC-LiTFSI-ZnO had never been found in literature. In the present work, the highest ionic conductivity of CMC-LiTFSI-ZnO was achieved at 1.94209 x 10⁻⁶ S/cm with 4wt.% ZnO. The FTIR spectra showed the occurence of complexation between the CMC, LiTFSI salt and ZnO nanofiller. XRD analysis indicated that amourphous nature is higher in CMC-LiTFSI-ZnO. The presence of 2wt.% ZnO content within CMC-LiTFSI increases the tensile strength from 798.164 MPa to 1013.427 MPa and optimum value of 4wt.% ZnO is 13.924% for elongation at break. It can be concluded that ZnO are the promising nanofiller to enhance ionic conductivity and mechanical properties of CMC-LiTFSI SPE system.